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Klein Gordon equation

For the Schrodinger equation, we start with p2

2m + V = E and add

operators.. p⃗→ −ih̄∇⃗ and E = ih̄∂/∂t.

This gives us the Schrodinger
equation

− h̄2

2m
∇2ψ + V ψ = ih̄

∂

∂t
ψ

For the KG equation, we could start from E2 − p2c2 = m2c4 But lets
start from easier notation pµpµ −m2c2 = 0.

Here xµ is a covariant vector, with xµ = gµνxν as a contravariant vector
and gµν is a 4× 4 matrix.

We have pµ = ih̄∂µ, where ∂µ = ∂
∂xµ

. Explicitly, ∂0 = 1
c
∂
∂t , ∂1 = ∂

∂x ,

and so on.
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Klein Gordon equation

Take pµpµ −m2c2 = 0 and put p→ ih̄∂µ

−h̄2∂µ∂µ −m2c2 = 0

−∂µ∂µψ =

(
mc

h̄2

)
ψ

This gives us the free particle Klein Gordon equation

− 1

c2
∂2

∂t2
ψ + ∇⃗2ψ =

(mc
h̄

)2
ψ

We can define the D’Alembertian operator ∂µ∂µ = □, and along with
h̄ = c = 1, we get a neat equation

(□+m2)ψ = 0

□ = 1
c2

∂2

∂t2 −∇2.
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Problems with KG equation

▶ Second-order time derivative gives rise to negative energy
plane wave solutions, and negative probabilities.

▶ Dirac tried to fix this by looking for equation that has first
order derivatives in time.

▶ KG equation works for spin 0 particles, Dirac equation for

spin-
1

2
particles.
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Dirac equation

Start by factorizing pµpµ −m2c2 = 0

If its just p0, we could have (p0)2 −m2c2 = (p0 +mc)(p0 −mc).But
including spatial components, we need

pµpµ −m2c2 = (βkpk +mc)(γλpλ −mc)

= βkγλpkpλ −mc(βk − γk)pk −m2c2

Now we dont want any linear terms in pk (it wont factorize), so we need
βk = γk. So we have pµpµ = γkγλpkpλ. Thus

(p0)2 − (p1)2 − · · · = (γ0)2(p0)2 − (γ1)2(p1)2 − (γ2)2(p2)2 − (γ3)2(p3)2

+ γ0γ1p0p1 + γ0γ2p0p2 + γ0γ3p0p3

+ γ1γ0p0p1 + · · ·

We want to get rid of the cross terms, i.e. (γ0γ1 + γ1γ0)p0p1.
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Dirac equation

If {A,B} = AB +BA, we want

{γµ, γν} = 2gµν

This is the Clifford algebra and the γ’s are matrices. The smallest set are
4× 4 matrices.

γ0 =

(
1 0
0 −1

)
γi =

(
0 σi

−σi 0

)
where σi are Pauli spin matrices, (1 implies the identity matrix). This is
the Bjorken and Drell representation.

That is γ0γ1 + γ1γ0 = 0, γ0γ0 = 1, γ1γ1 = γ2γ2 = γ3γ3 = −1.

Define γ5 ≡ iγ0γ1γ2γ3 =

(
0 1
1 0

)
, Note that {γµ, γ5} = 0.
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Dirac equation

pµpµ −m2c2 = (γkpk +mc)(γλpλ = mc) = 0

Conventionally we take γµpµ −mc = 0. Put in pµ → −ih̄∂µ, and we get
the Dirac equation

ih̄γµ∂µψ −mc ψ = 0

Now this ψ is a four-element column vector, called Dirac spinor or
bispinor.

ψ =

(
ψ1

ψ2

ψ3

ψ4

)
We write this as

ψA =

(
ψ1

ψ2

)
ψB =

(
ψ3

ψ4

)
ψA and ψB are two component spinors representing electrons, positrons.

ψ =

 e−↑
e−↓
e+↓
e+↑



7 / 23



Dirac equation

pµpµ −m2c2 = (γkpk +mc)(γλpλ = mc) = 0

Conventionally we take γµpµ −mc = 0. Put in pµ → −ih̄∂µ, and we get
the Dirac equation

ih̄γµ∂µψ −mc ψ = 0

Now this ψ is a four-element column vector, called Dirac spinor or
bispinor.

ψ =

(
ψ1

ψ2

ψ3

ψ4

)
We write this as

ψA =

(
ψ1

ψ2

)
ψB =

(
ψ3

ψ4

)
ψA and ψB are two component spinors representing electrons, positrons.

ψ =

 e−↑
e−↓
e+↓
e+↑



7 / 23



Dirac equation

pµpµ −m2c2 = (γkpk +mc)(γλpλ = mc) = 0

Conventionally we take γµpµ −mc = 0. Put in pµ → −ih̄∂µ, and we get
the Dirac equation

ih̄γµ∂µψ −mc ψ = 0

Now this ψ is a four-element column vector, called Dirac spinor or
bispinor.

ψ =

(
ψ1

ψ2

ψ3

ψ4

)
We write this as

ψA =

(
ψ1

ψ2

)
ψB =

(
ψ3

ψ4

)
ψA and ψB are two component spinors representing electrons, positrons.

ψ =

 e−↑
e−↓
e+↓
e+↑



7 / 23



Plane-wave solutions

Write plane-wave solutions to Dirac equation ((iγµ∂µ −m)ψ = 0)
as

ψ(x) = ae−ip·xu(p)

Here x, p are 4-vectors and u(p) is a bispinor, such that ψ satisfies
Dirac equation.

Putting it into Dirac equation gives

(γµpµ −m)u = 0

γµpµ = γ0p0 − γ⃗ · p⃗ =
(
p0 −p⃗ · σ⃗
p⃗ · σ⃗ −p0

)
and

u =

(
uA
uB

)
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Plane-wave solutions

u(1) = N


1
0
pz

E+m
px+ipy
E+m



u(2) = N


0
1

px−ipy
E+m
−pz
E+m


ψ = ae−ip·xu (particles)

(γµpµ −m)u = 0

v(1) = N


px−ipy
E+m
−pz
E+m

0
1



v(2) = −N


pz

E+m
px+ipy
E+m

1
0


ψ = aeip·xv (antiparticles)

(γµpµ +m)v = 0

N ≡
√
E +m
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Adjoint spinor

Now ψ†ψ is not Lorentz invariant.

We define an adjoint bispinor as
ψ̄ = ψ†γ0 = (ψ∗

1, ψ
∗
2,−ψ∗

3,−ψ∗
4).

The quantity ψ̄ψ = ψ†γ0ψ is Lorentz invariant (i.e. a scalar).
(Note: ψ̄ψ = |ψ1|2+|ψ2|2−|ψ3|2−|ψ4|2).

We can thus write

ψ̄ψ scalar
ψ̄γ5ψ pseudoscalar
ψ̄γµψ vector (4-components)
ψ̄γµγ5ψ pseudovector (4-components)
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ψ transform

If ψ is a Dirac spinor, then if you go from a stationary frame to
frame moving with speed v in x-direction

ψ → ψ′ = Sψ

where S is a 4× 4 matrix

S = a+ + a−γ
0γ1

with

a± = ±
√

1

2
(γ ± 1)

Note that this last γ = 1/
√
1− v2/c2.
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Lagrangian density

▶ In CM, we have L(qi, q̇i), and Euler Lagrange equations are

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi

▶ Here we start with a Lagrangian density L(ϕi,
∂ϕi
∂xµ

, xµ), where ϕi are the

fields and we apply

∂µ

(
L

∂(∂µϕi)

)
=

∂L
∂ϕi

to get the EOM.

▶ Thus Dirac Lagrangian

L = iψ̄γµ∂µψ −mψ̄ψ

gives the Dirac equation

iγµ∂µψ −mψ = 0

▶ Notice the mass term.
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Maxwell equations

▶ The 4-potential is Aµ = (ϕ/c, A⃗)

▶ Fµν is the field strength tensor.. explicitly

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c BZ 0 −Bx

Ez/c −By Bx 0



▶ If we start with L = −1

4
FµνF

µν − jµAµ, we get ∂µF
µν = jν .

▶ If we add to L a term like
1

2
m2AµA

µ, we get the KG equation

(□2 +m2)Aµ = jµ.

▶ Feynman rules follow from terms in the Lagrangian (quadratic in fields
gives propagators, vertices from interactions).
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Gauge invariance

▶ A global phase transform is ψ → eiθψ.

▶ Gauge invariance implies that we cannot determine absolute phase
(translational invariance means cannot determine absolute position). A
global gauge is that the global value is fixed (and is a freedom for us).

▶ In general, this phase can vary from point to point, i.e. θ = θ(x).

▶ Now if we apply a local phase transformation ψ → eiθ(x)ψ and require
that the Lagrangian remain invariant, then we must add terms to
Lagrangian to cancel the derivatives from the Euler-Lagrange equations.

▶ Thus if L = iψ̄γµ∂µψ −mψ̄ψ, this isn’t invariant under local gauge
transformation.

∂µψ = eiθ(x)∂µψ + ieiθ(x)ψ∂µθ

▶ To maintain invariance of the Lagrangian, what we need is some new
covariant derivative such that Dµψ → eiθ(x)Dµψ.
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Gauge field

▶ Such a covariant derivative for QED is

Dµ ≡ ∂µ − ieAµ

where the field Aµ transforms as

Aµ → Aµ +
1

e
∂µθ

▶ The Lagrangian is now

L = iψ̄γµDµψ −mψ̄ψ

= ψ̄(iγµ∂µ −m)ψ + eψ̄γµψAµ

▶ Local phase invariance forced us to add vector gauge field coupling to
particles.

▶ If Aµ is wavefunction of photon, need a term for its kinetic energy.

▶ Only way to add it is in terms of Fµν .

L = ψ̄(iγµ∂µ −m)ψ + eψ̄γµψAµ − 1

4
FµνF

µν
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Gauge theories

Thus applying local phase invariance to Dirac Lagrangian generates all of ED.

The Feynman rules for QED look like this

▶ Notation (p’s and q’s)

▶ External lines: electrons get u (incoming) or ū outgoing, positrons get v̄
(incoming) or v (outgoing), and photons get a ϵµ (incoming), ϵ∗µ
(outgoing) (Aµ(x) = ae−(i/h̄)p·xϵ

(s)
µ is photon wave function)

▶ Each vertex gets igeγ
µ

▶ Proagators are: electrons/positrons
i(γµqµ+mc)

q2−m2c2
, and for photons

−igµν

q2

▶ Conservation of energy/momentum at each vertex

▶ Integrate over internal momenta

▶ Cancel the final δ function.
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Gauge theories

Mγ = − e2

k2
(µ̄ γν µ)(ē γν e)

MZ = − g2

4 cos2 θW

[
µ̄ γν(cV − cA γ5) µ

](gνσ − kνkσ/M
2
Z

k2 −M2
Z

)[
ē γσ(cV − cA γ5) e

]
Here k is the four momentum of the virtual γ or Z (s = k2). The weak vertex

factor is −i g
cos θW

γµ 1
2

(
cfV − cfAγ

5
)
, and θW is the weak mixing angle.

Aµ = Bµ cos θW +W 3
µ sin θW (massless)

Zµ = −Bµ sin θW +W 3
µ cos θW (massive)
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Gauge theories

▶ Applying similar ideas of local gauge invariance can yield the other forces
as well (Strong as well as weak).

▶ Three massless fields of spin-1 (when we insist on local SU(2) invariance).

▶ Similarly applying to SU(3) we get eight massless spin-1 bosons.

We can’t add mass terms to Lagrangian like M2WµW
µ because it makes the

theory non-renormalizable. Thus while QCD is okay, for the weak interaction,
to get massive bosons, we have to do something else.
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Generating mass

▶ Consider L ≡ T − V =
1

2
(∂µϕ)

2 − (
1

2
µ2ϕ2 +

1

4
λϕ4)

▶ For µ2 > 0, potential looks like below (and there is a regular mass term)
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Generating mass

▶ Consider L ≡ T − V =
1

2
(∂µϕ)

2 − (
1

2
µ2ϕ2 +

1

4
λϕ4)

▶ For µ2 < 0, potential looks like below and minimum is not at zero.
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SSB

▶ Minima for potential was at ϕ = ±v, where v =
√

−µ2/λ.

▶ Let us expand about this minima ϕ(x) = v + η(x) (η are quantum
fluctuations about minima)

▶ This gives L =
1

2
(∂µη)

2 − λv2η2 −O(η3)−O(η4)

▶ Reflection symmetry broken by choice of ground state. (i.e. no longer
symmetric under ϕ→ −ϕ.

▶ We got a mass term for η field (mη =
√
2λv2).

▶ These two Lagrangians are the same and should lead to same physics.

▶ Feynman rules is a perturbative process, thus needs to be defined about
stable minima.

▶ This mass was generated (or revealed) by spontaneous symmetry
breaking.
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SSB of Global symmetry

▶ Repeat for a complex scalar field ϕ = (ϕ1 + iϕ2)/
√
2 with

L = (∂µϕ)
∗(∂µϕ)− µ2ϕ∗ϕ− λ(ϕ∗ϕ)2

▶ Require invariance under ϕ→ eiθϕ (U(1) global gauge symmetry).

▶ Here we have a circle of minima ϕ2
1 + ϕ2

2 = v2, with v2 = −µ2/λ.

▶ Expand around minimum, ϕ(x) =

√
1

2
[v + η(x) + iξ(x)]

L =
1

2
(∂µξ)

2 +
1

2
(∂µη)

2 + µ2η2 + const + cubic/quartic terms in η, ξ

▶ Mass term for η field as expected.

▶ But also a kinetic term for ξ ... where is the mass term?

▶ SSB of global continous symmetry gives rise to one or more massless
scalar spin-0 bosons called as Goldstone bosons.
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Higgs mechanism

▶ Now we apply this procedure.

▶ Take a non-zero ground state of the Lagrangian (a broken symmetry).

▶ Require local gauge invariance of the Lagrangian.

▶ This gets us massive gauge fields + massless Goldstone bosons.

▶ What it effectively means is that by giving mass to gauge fields, we
increased the polarization degrees of freedom from 2 to 3. The extra
degree of freedom only corresponds to freedom to make a gauge
transformation.

▶ Exploiting gauge freedom, we can get rid of Goldstone boson, but we are
left with a massive scalar particle Higgs (+ the massive gauge fields as
before).

▶ Unwanted massless Goldstone boson turned into longitudinal polarization
of the massive gauge particles.

▶ Very approachable discussion in Halzen/Martin Chapter 13/14.
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left with a massive scalar particle Higgs (+ the massive gauge fields as
before).

▶ Unwanted massless Goldstone boson turned into longitudinal polarization
of the massive gauge particles.

▶ Very approachable discussion in Halzen/Martin Chapter 13/14.
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