PHY 4154

Nuclear and Particle Physics

Sourabh Dube

Aug 2025

For the Schrodinger equation, we start with $\frac{p^2}{2m} + V = E$ and add operators.. $\vec{p} \to -i\hbar \vec{\nabla}$ and $E = i\hbar \partial/\partial t$.

For the Schrodinger equation, we start with $\frac{p^2}{2m}+V=E$ and add operators.. $\vec{p}\to -i\hbar\vec{\nabla}$ and $E=i\hbar\partial/\partial t$. This gives us the Schrodinger equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial}{\partial t}\psi$$

For the Schrodinger equation, we start with $\frac{p^2}{2m}+V=E$ and add operators.. $\vec{p}\to -i\hbar\vec{\nabla}$ and $E=i\hbar\partial/\partial t$. This gives us the Schrodinger equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial}{\partial t}\psi$$

For the KG equation, we could start from $E^2-p^2c^2=m^2c^4\,$

For the Schrodinger equation, we start with $\frac{p^2}{2m}+V=E$ and add operators.. $\vec{p}\to -i\hbar\vec{\nabla}$ and $E=i\hbar\partial/\partial t$. This gives us the Schrodinger equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial}{\partial t}\psi$$

For the KG equation, we could start from $E^2-p^2c^2=m^2c^4$ But lets start from easier notation $p^\mu p_\mu-m^2c^2=0$.

Here x_μ is a covariant vector, with $x^\mu=g^{\mu\nu}x^\nu$ as a contravariant vector and $g^{\mu\nu}$ is a 4×4 matrix.

For the Schrodinger equation, we start with $\frac{p^2}{2m}+V=E$ and add operators.. $\vec{p}\to -i\hbar\vec{\nabla}$ and $E=i\hbar\partial/\partial t$. This gives us the Schrodinger equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial}{\partial t}\psi$$

For the KG equation, we could start from $E^2-p^2c^2=m^2c^4$ But lets start from easier notation $p^\mu p_\mu-m^2c^2=0$.

Here x_μ is a covariant vector, with $x^\mu=g^{\mu\nu}x^\nu$ as a contravariant vector and $g^{\mu\nu}$ is a 4×4 matrix.

We have $p_{\mu}=i\hbar\partial_{\mu}$, where $\partial_{\mu}=\frac{\partial}{\partial x_{\mu}}$. Explicitly, $\partial_{0}=\frac{1}{c}\frac{\partial}{\partial t}$, $\partial_{1}=\frac{\partial}{\partial x}$, and so on.

Take
$$p^\mu p_\mu - m^2 c^2 = 0$$
 and put $p \to i\hbar\partial_\mu$
$$-\hbar^2\partial^\mu\partial_\mu - m^2c^2 = 0$$

$$-\partial^\mu\partial_\mu\psi = \left(\frac{mc}{\hbar^2}\right)\psi$$

Take
$$p^\mu p_\mu - m^2 c^2 = 0$$
 and put $p \to i\hbar\partial_\mu$
$$-\hbar^2\partial^\mu\partial_\mu - m^2c^2 = 0$$

$$-\partial^\mu\partial_\mu\psi = \left(\frac{mc}{\hbar^2}\right)\psi$$

This gives us the free particle Klein Gordon equation

$$-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\psi + \vec{\nabla}^2\psi = \left(\frac{mc}{\hbar}\right)^2\psi$$

Take
$$p^\mu p_\mu - m^2 c^2 = 0$$
 and put $p \to i\hbar\partial_\mu$
$$-\hbar^2 \partial^\mu \partial_\mu - m^2 c^2 = 0$$

$$-\partial^\mu \partial_\mu \psi = \left(\frac{mc}{\hbar^2}\right)\psi$$

This gives us the free particle Klein Gordon equation

$$\boxed{-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\psi + \vec{\nabla}^2\psi = \left(\frac{mc}{\hbar}\right)^2\psi}$$

We can define the D'Alembertian operator $\partial^{\mu}\partial_{\mu}=\Box$, and along with $\hbar=c=1$, we get a neat equation

$$(\Box + m^2)\psi = 0$$

$$\Box = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \nabla^2.$$

Problems with KG equation

- Second-order time derivative gives rise to negative energy plane wave solutions, and negative probabilities.
- ▶ Dirac tried to fix this by looking for equation that has first order derivatives in time.
- ► KG equation works for spin 0 particles, Dirac equation for spin- $\frac{1}{2}$ particles.

Start by factorizing $p^\mu p_\mu - m^2 c^2 = 0$

Start by factorizing $p^\mu p_\mu - m^2 c^2 = 0$ If its just p^0 , we could have $(p^0)^2 - m^2 c^2 = (p^0 + mc)(p^0 - mc)$.

Start by factorizing $p^{\mu}p_{\mu}-m^{2}c^{2}=0$

If its just $p^0,$ we could have $(p^0)^2-m^2c^2=(p^0+mc)(p^0-mc).$ But including spatial components, we need

$$p^{\mu}p_{\mu} - m^2c^2 = (\beta^k p_k + mc)(\gamma^{\lambda}p_{\lambda} - mc)$$
$$= \beta^k \gamma^{\lambda} p_k p_{\lambda} - mc(\beta^k - \gamma^k)p_k - m^2c^2$$

Start by factorizing $p^{\mu}p_{\mu}-m^{2}c^{2}=0$

If its just p^0 , we could have $(p^0)^2-m^2c^2=(p^0+mc)(p^0-mc).$ But including spatial components, we need

$$p^{\mu}p_{\mu} - m^2c^2 = (\beta^k p_k + mc)(\gamma^{\lambda} p_{\lambda} - mc)$$
$$= \beta^k \gamma^{\lambda} p_k p_{\lambda} - mc(\beta^k - \gamma^k)p_k - m^2c^2$$

Now we dont want any linear terms in p_k (it wont factorize), so we need $\beta^k=\gamma^k$. So we have $p^\mu p_\mu=\gamma^k\gamma^\lambda p_k p_\lambda$.

Start by factorizing $p^\mu p_\mu - m^2 c^2 = 0$

If its just p^0 , we could have $(p^0)^2-m^2c^2=(p^0+mc)(p^0-mc).$ But including spatial components, we need

$$p^{\mu}p_{\mu} - m^2c^2 = (\beta^k p_k + mc)(\gamma^{\lambda} p_{\lambda} - mc)$$
$$= \beta^k \gamma^{\lambda} p_k p_{\lambda} - mc(\beta^k - \gamma^k)p_k - m^2c^2$$

Now we dont want any linear terms in p_k (it wont factorize), so we need $\beta^k=\gamma^k$. So we have $p^\mu p_\mu=\gamma^k\gamma^\lambda p_k p_\lambda$. Thus

$$(p^{0})^{2} - (p^{1})^{2} - \dots = (\gamma^{0})^{2}(p^{0})^{2} - (\gamma^{1})^{2}(p^{1})^{2} - (\gamma^{2})^{2}(p^{2})^{2} - (\gamma^{3})^{2}(p^{3})^{2}$$

$$+ \gamma^{0}\gamma^{1}p_{0}p_{1} + \gamma^{0}\gamma^{2}p_{0}p_{2} + \gamma^{0}\gamma^{3}p_{0}p_{3}$$

$$+ \gamma^{1}\gamma^{0}p_{0}p_{1} + \dots$$

We want to get rid of the cross terms, i.e. $(\gamma^0 \gamma^1 + \gamma^1 \gamma^0) p_0 p_1$.

If
$$\{A, B\} = AB + BA$$
, we want

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$$

This is the Clifford algebra and the γ 's are matrices. The smallest set are 4×4 matrices.

If
$$\{A, B\} = AB + BA$$
, we want

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$$

This is the Clifford algebra and the γ 's are matrices. The smallest set are 4×4 matrices.

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

where σ^i are Pauli spin matrices, (1 implies the identity matrix). This is the Bjorken and Drell representation.

If $\{A, B\} = AB + BA$, we want

$$\{\gamma^\mu,\gamma^\nu\}=2g^{\mu\nu}$$

This is the Clifford algebra and the γ 's are matrices. The smallest set are 4×4 matrices.

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

where σ^i are Pauli spin matrices, (1 implies the identity matrix). This is the Bjorken and Drell representation.

That is
$$\gamma^0\gamma^1+\gamma^1\gamma^0=0$$
, $\gamma^0\gamma^0=1$, $\gamma^1\gamma^1=\gamma^2\gamma^2=\gamma^3\gamma^3=-1$.

Define
$$\gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, Note that $\{\gamma^\mu, \gamma^5\} = 0$.

$$p^{\mu}p_{\mu} - m^2c^2 = (\gamma^k p_k + mc)(\gamma^{\lambda}p_{\lambda} = mc) = 0$$

$$p^{\mu}p_{\mu} - m^2c^2 = (\gamma^k p_k + mc)(\gamma^{\lambda}p_{\lambda} = mc) = 0$$

Conventionally we take $\gamma^\mu p_\mu - mc = 0$. Put in $p_\mu \to -i\hbar\partial_\mu$, and we get the Dirac equation

$$i\hbar\gamma^{\mu}\partial_{\mu}\psi - mc\ \psi = 0$$

$$p^{\mu}p_{\mu} - m^2c^2 = (\gamma^k p_k + mc)(\gamma^{\lambda}p_{\lambda} = mc) = 0$$

Conventionally we take $\gamma^\mu p_\mu - mc = 0.$ Put in $p_\mu \to -i\hbar\partial_\mu$, and we get the Dirac equation

$$i\hbar \gamma^{\mu}\partial_{\mu}\psi - mc\ \psi = 0$$

Now this ψ is a four-element column vector, called Dirac spinor or bispinor. ψ_1

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

We write this as

$$\psi_A = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \qquad \psi_B = \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}$$

 ψ_A and ψ_B are two component spinors representing electrons, positrons.

$$\psi = \begin{pmatrix} e^- \uparrow \\ e^- \downarrow \\ e^+ \downarrow \\ e^+ \uparrow \end{pmatrix}$$

Plane-wave solutions

Write plane-wave solutions to Dirac equation ($(i\gamma^\mu\partial_\mu-m)\,\psi=0$) as $\psi(x)=ae^{-ip\cdot x}u(p)$

Here x,p are 4-vectors and u(p) is a bispinor, such that ψ satisfies Dirac equation.

Plane-wave solutions

Write plane-wave solutions to Dirac equation ($(i\gamma^\mu\partial_\mu-m)\,\psi=0$) as $\psi(x)=ae^{-ip\cdot x}u(p)$

Here x,p are 4-vectors and u(p) is a bispinor, such that ψ satisfies Dirac equation.

Putting it into Dirac equation gives

$$(\gamma^{\mu}p_{\mu} - m)u = 0$$

$$\gamma^{\mu}p_{\mu} = \gamma^{0}p^{0} - \vec{\gamma} \cdot \vec{p} = \begin{pmatrix} p^{0} & -\vec{p} \cdot \vec{\sigma} \\ \vec{p} \cdot \vec{\sigma} & -p^{0} \end{pmatrix}$$

and

$$u = \begin{pmatrix} u_A \\ u_B \end{pmatrix}$$

Plane-wave solutions

 $N \equiv \sqrt{E+m}$

$$u^{(1)} = N \begin{pmatrix} 1 \\ 0 \\ \frac{p_z}{E+m} \\ \frac{p_x+ip_y}{E+m} \end{pmatrix}$$

$$v^{(1)} = N \begin{pmatrix} \frac{p_x-ip_y}{E+m} \\ 0 \\ 1 \end{pmatrix}$$

$$u^{(2)} = N \begin{pmatrix} 0 \\ 1 \\ \frac{p_x-ip_y}{E+m} \\ \frac{-p_z}{E+m} \end{pmatrix}$$

$$v^{(2)} = -N \begin{pmatrix} \frac{p_z}{E+m} \\ \frac{p_x+ip_y}{E+m} \\ 1 \\ 0 \end{pmatrix}$$

$$\psi = ae^{-ip\cdot x}u \text{ (particles)}$$

$$(\gamma^\mu p_\mu - m)u = 0$$

$$\psi = ae^{ip\cdot x}v \text{ (antiparticles)}$$

$$(\gamma^\mu p_\mu + m)v = 0$$

Adjoint spinor

Now $\psi^\dagger \psi$ is not Lorentz invariant.

Adjoint spinor

Now $\psi^\dagger \psi$ is not Lorentz invariant. We define an adjoint bispinor as $\bar{\psi}=\psi^\dagger \gamma^0=(\psi_1^*,\psi_2^*,-\psi_3^*,-\psi_4^*).$

The quantity $\bar{\psi}\psi=\psi^\dagger\gamma^0\psi$ is Lorentz invariant (i.e. a scalar). (Note: $\bar{\psi}\psi=|\psi_1|^2+|\psi_2|^2-|\psi_3|^2-|\psi_4|^2$).

Adjoint spinor

Now $\psi^\dagger \psi$ is not Lorentz invariant. We define an adjoint bispinor as $\bar{\psi} = \psi^\dagger \gamma^0 = (\psi_1^*, \psi_2^*, -\psi_3^*, -\psi_4^*).$

The quantity $\bar{\psi}\psi=\psi^\dagger\gamma^0\psi$ is Lorentz invariant (i.e. a scalar). (Note: $\bar{\psi}\psi=|\psi_1|^2+|\psi_2|^2-|\psi_3|^2-|\psi_4|^2$).

We can thus write

$$\begin{array}{ll} \bar{\psi}\psi & \text{scalar} \\ \bar{\psi}\gamma^5\psi & \text{pseudoscalar} \\ \bar{\psi}\gamma^\mu\psi & \text{vector (4-components)} \\ \bar{\psi}\gamma^\mu\gamma^5\psi & \text{pseudovector (4-components)} \end{array}$$

ψ transform

If ψ is a Dirac spinor, then if you go from a stationary frame to frame moving with speed v in $x\text{-}\mathrm{direction}$

$$\psi \to \psi' = S\psi$$

where S is a 4×4 matrix

$$S = a_+ + a_- \gamma^0 \gamma^1$$

with

$$a_{\pm} = \pm \sqrt{\frac{1}{2}(\gamma \pm 1)}$$

Note that this last $\gamma = 1/\sqrt{1 - v^2/c^2}$.

▶ In CM, we have $L(q_i,\dot{q}_i)$, and Euler Lagrange equations are

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i}$$

▶ In CM, we have $L(q_i,\dot{q}_i)$, and Euler Lagrange equations are

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i}$$

▶ Here we start with a Lagrangian density $\mathcal{L}(\phi_i, \frac{\partial \phi_i}{\partial x_\mu}, x_\mu)$, where ϕ_i are the fields

▶ In CM, we have $L(q_i, \dot{q}_i)$, and Euler Lagrange equations are

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i}$$

▶ Here we start with a Lagrangian density $\mathcal{L}(\phi_i, \frac{\partial \phi_i}{\partial x_\mu}, x_\mu)$, where ϕ_i are the fields and we apply

$$\partial_{\mu} \left(\frac{\mathcal{L}}{\partial (\partial_{\mu} \phi_i)} \right) = \frac{\partial \mathcal{L}}{\partial \phi_i}$$

to get the EOM.

▶ In CM, we have $L(q_i, \dot{q}_i)$, and Euler Lagrange equations are

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i}$$

Here we start with a Lagrangian density $\mathcal{L}(\phi_i, \frac{\partial \phi_i}{\partial x_\mu}, x_\mu)$, where ϕ_i are the fields and we apply

$$\partial_{\mu} \left(\frac{\mathcal{L}}{\partial (\partial_{\mu} \phi_i)} \right) = \frac{\partial \mathcal{L}}{\partial \phi_i}$$

to get the EOM.

Thus Dirac Lagrangian

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi$$

gives the Dirac equation

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

Notice the mass term.

- ▶ The 4-potential is $A^{\mu} = (\phi/c, \vec{A})$
- $ightharpoonup F^{\mu\nu}$ is the field strength tensor.. explicitly

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_Z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix}$$

- ▶ The 4-potential is $A^{\mu} = (\phi/c, \vec{A})$
- $ightharpoonup F^{\mu\nu}$ is the field strength tensor.. explicitly

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_Z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix}$$

If we start with $\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-j^{\mu}A_{\mu}$, we get $\partial_{\mu}F^{\mu\nu}=j^{\nu}$.

- ▶ The 4-potential is $A^{\mu} = (\phi/c, \vec{A})$
- $ightharpoonup F^{\mu\nu}$ is the field strength tensor.. explicitly

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_Z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix}$$

- If we start with $\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-j^{\mu}A_{\mu}$, we get $\partial_{\mu}F^{\mu\nu}=j^{\nu}$.
- If we add to $\mathcal L$ a term like $\frac12 m^2 A_\mu A^\mu$, we get the KG equation $(\Box^2 + m^2) A^\mu = j^\mu.$

- ▶ The 4-potential is $A^{\mu} = (\phi/c, \vec{A})$
- $ightharpoonup F^{\mu\nu}$ is the field strength tensor.. explicitly

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_Z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix}$$

- If we start with $\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-j^{\mu}A_{\mu}$, we get $\partial_{\mu}F^{\mu\nu}=j^{\nu}$.
- If we add to $\mathcal L$ a term like $\frac12 m^2 A_\mu A^\mu$, we get the KG equation $(\Box^2 + m^2) A^\mu = j^\mu.$
- Feynman rules follow from terms in the Lagrangian (quadratic in fields gives propagators, vertices from interactions).

 \blacktriangleright A global phase transform is $\psi \to e^{i\theta} \psi.$

- ▶ A global phase transform is $\psi \to e^{i\theta}\psi$.
- Gauge invariance implies that we cannot determine absolute phase (translational invariance means cannot determine absolute position). A global gauge is that the global value is fixed (and is a freedom for us).

- ▶ A global phase transform is $\psi \to e^{i\theta} \psi$.
- Gauge invariance implies that we cannot determine absolute phase (translational invariance means cannot determine absolute position). A global gauge is that the global value is fixed (and is a freedom for us).
- ▶ In general, this phase can vary from point to point, i.e. $\theta = \theta(x)$.
- Now if we apply a local phase transformation $\psi \to e^{i\theta(x)}\psi$ and require that the Lagrangian remain invariant, then we must add terms to Lagrangian to cancel the derivatives from the Euler-Lagrange equations.

- ▶ A global phase transform is $\psi \to e^{i\theta}\psi$.
- Gauge invariance implies that we cannot determine absolute phase (translational invariance means cannot determine absolute position). A global gauge is that the global value is fixed (and is a freedom for us).
- ▶ In general, this phase can vary from point to point, i.e. $\theta = \theta(x)$.
- Now if we apply a local phase transformation $\psi \to e^{i\theta(x)}\psi$ and require that the Lagrangian remain invariant, then we must add terms to Lagrangian to cancel the derivatives from the Euler-Lagrange equations.
- ▶ Thus if $\mathcal{L}=i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi-m\bar{\psi}\psi$, this isn't invariant under local gauge transformation.

$$\partial_{\mu}\psi = e^{i\theta(x)}\partial_{\mu}\psi + ie^{i\theta(x)}\psi\partial_{\mu}\theta$$

- A global phase transform is $\psi \to e^{i\theta} \psi$.
- Gauge invariance implies that we cannot determine absolute phase (translational invariance means cannot determine absolute position). A global gauge is that the global value is fixed (and is a freedom for us).
- ▶ In general, this phase can vary from point to point, i.e. $\theta = \theta(x)$.
- Now if we apply a local phase transformation $\psi \to e^{i\theta(x)}\psi$ and require that the Lagrangian remain invariant, then we must add terms to Lagrangian to cancel the derivatives from the Euler-Lagrange equations.
- ▶ Thus if $\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi m\bar{\psi}\psi$, this isn't invariant under local gauge transformation.

$$\partial_{\mu}\psi = e^{i\theta(x)}\partial_{\mu}\psi + ie^{i\theta(x)}\psi\partial_{\mu}\theta$$

▶ To maintain invariance of the Lagrangian, what we need is some new covariant derivative such that $D_{\mu}\psi \rightarrow e^{i\theta(x)}D_{\mu}\psi$.

Such a covariant derivative for QED is

$$D_{\mu} \equiv \partial_{\mu} - ieA_{\mu}$$

where the field A_{μ} transforms as

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \theta$$

Such a covariant derivative for QED is

$$D_{\mu} \equiv \partial_{\mu} - ieA_{\mu}$$

where the field A_{μ} transforms as

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \theta$$

The Lagrangian is now

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi$$
$$= \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

Such a covariant derivative for QED is

$$D_{\mu} \equiv \partial_{\mu} - ieA_{\mu}$$

where the field A_{μ} transforms as

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \theta$$

The Lagrangian is now

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi$$
$$= \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

Local phase invariance forced us to add vector gauge field coupling to particles.

Such a covariant derivative for QED is

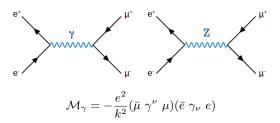
$$D_{\mu} \equiv \partial_{\mu} - ieA_{\mu}$$

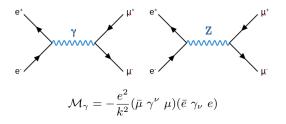
where the field A_{μ} transforms as

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \theta$$

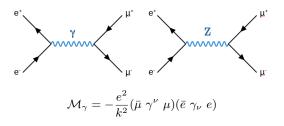
The Lagrangian is now

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi$$
$$= \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

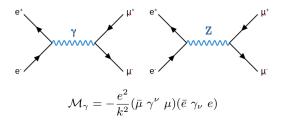

- Local phase invariance forced us to add vector gauge field coupling to particles.
- ▶ If A_{μ} is wavefunction of photon, need a term for its kinetic energy.
- ▶ Only way to add it is in terms of $F_{\mu\nu}$.


$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + e\bar{\psi}\gamma^{\mu}\psi A_{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

Thus applying local phase invariance to Dirac Lagrangian generates all of ED.


Thus applying local phase invariance to Dirac Lagrangian generates all of ED. The Feynman rules for QED look like this

- Notation (p's and q's)
- External lines: electrons get u (incoming) or \bar{u} outgoing, positrons get \bar{v} (incoming) or v (outgoing), and photons get a ϵ_{μ} (incoming), ϵ_{μ}^{*} (outgoing) $(A_{\mu}(x) = ae^{-(i/\hbar)p\cdot x}\epsilon_{\mu}^{(s)}$ is photon wave function)
- ightharpoonup Each vertex gets $ig_e \gamma^{\mu}$
- ▶ Proagators are: electrons/positrons $\frac{i(\gamma^\mu q_\mu + mc)}{q^2 m^2c^2}$, and for photons $\frac{-ig_{\mu\nu}}{q^2}$
- Conservation of energy/momentum at each vertex
- ▶ Integrate over internal momenta
- Cancel the final δ function.



$$\mathcal{M}_{Z} = -\frac{g^{2}}{4\cos^{2}\theta_{W}} \left[\bar{\mu} \; \gamma^{\nu} (c_{V} - c_{A} \; \gamma^{5}) \; \mu \right] \left(\frac{g_{\nu\sigma} - k_{\nu}k_{\sigma}/M_{Z}^{2}}{k^{2} - M_{Z}^{2}} \right) \left[\bar{e} \; \gamma^{\sigma} (c_{V} - c_{A} \; \gamma^{5}) \; e \right]$$

$$\mathcal{M}_{Z} = -\frac{g^{2}}{4\cos^{2}\theta_{W}} \left[\bar{\mu} \; \gamma^{\nu} (c_{V} - c_{A} \; \gamma^{5}) \; \mu \right] \left(\frac{g_{\nu\sigma} - k_{\nu} k_{\sigma} / M_{Z}^{2}}{k^{2} - M_{Z}^{2}} \right) \left[\bar{e} \; \gamma^{\sigma} (c_{V} - c_{A} \; \gamma^{5}) \; e \right]$$

Here k is the four momentum of the virtual γ or Z $(s=k^2)$. The weak vertex factor is $-i\frac{g}{\cos\theta_W}\gamma^\mu\frac{1}{2}\left(c_V^f-c_A^f\gamma^5\right)$,

$$\mathcal{M}_{Z} = -\frac{g^{2}}{4\cos^{2}\theta_{W}} \left[\bar{\mu} \; \gamma^{\nu} (c_{V} - c_{A} \; \gamma^{5}) \; \mu \right] \left(\frac{g_{\nu\sigma} - k_{\nu}k_{\sigma}/M_{Z}^{2}}{k^{2} - M_{Z}^{2}} \right) \left[\bar{e} \; \gamma^{\sigma} (c_{V} - c_{A} \; \gamma^{5}) \; e \right]$$

Here k is the four momentum of the virtual γ or Z ($s=k^2$). The weak vertex factor is $-i\frac{g}{\cos\theta_W}\gamma^\mu\frac{1}{2}\left(c_V^f-c_A^f\gamma^5\right)$, and θ_W is the weak mixing angle.

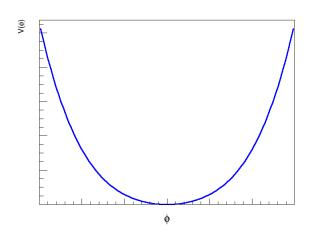
$$A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W \qquad \text{(massless)}$$

$$Z_{\mu} = -B_{\mu} \sin \theta_W + W_{\mu}^3 \cos \theta_W \qquad \text{(massive)}$$

Applying similar ideas of local gauge invariance can yield the other forces as well (Strong as well as weak).

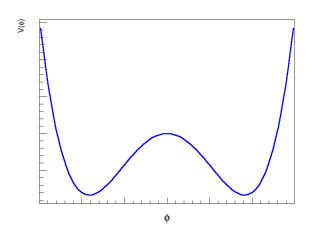
- Applying similar ideas of local gauge invariance can yield the other forces as well (Strong as well as weak).
- ▶ Three massless fields of spin-1 (when we insist on local SU(2) invariance).
- ► Similarly applying to SU(3) we get eight massless spin-1 bosons.

- Applying similar ideas of local gauge invariance can yield the other forces as well (Strong as well as weak).
- ▶ Three massless fields of spin-1 (when we insist on local SU(2) invariance).
- ▶ Similarly applying to SU(3) we get eight massless spin-1 bosons.


We can't add mass terms to Lagrangian like $M^2W_\mu W^\mu$ because it makes the theory non-renormalizable. Thus while QCD is okay, for the weak interaction, to get massive bosons, we have to do something else.

Generating mass

► Consider
$$\mathcal{L} \equiv T - V = \frac{1}{2}(\partial_{\mu}\phi)^2 - (\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4)$$


Generating mass

- $\qquad \qquad \textbf{Consider } \mathcal{L} \equiv T V = \frac{1}{2} (\partial_\mu \phi)^2 (\frac{1}{2} \mu^2 \phi^2 + \frac{1}{4} \lambda \phi^4)$
- For $\mu^2 > 0$, potential looks like below (and there is a regular mass term)

Generating mass

- $\qquad \qquad \textbf{Consider } \mathcal{L} \equiv T V = \frac{1}{2} (\partial_\mu \phi)^2 (\frac{1}{2} \mu^2 \phi^2 + \frac{1}{4} \lambda \phi^4)$
- For $\mu^2 < 0$, potential looks like below and minimum is not at zero.

- Minima for potential was at $\phi = \pm v$, where $v = \sqrt{-\mu^2/\lambda}$.
- Let us expand about this minima $\phi(x) = v + \eta(x)$ (η are quantum fluctuations about minima)

- Minima for potential was at $\phi = \pm v$, where $v = \sqrt{-\mu^2/\lambda}$.
- Let us expand about this minima $\phi(x)=v+\eta(x)$ (η are quantum fluctuations about minima)
- ▶ This gives $\mathcal{L}=\frac{1}{2}(\partial_{\mu}\eta)^2-\lambda v^2\eta^2-\mathcal{O}(\eta^3)-\mathcal{O}(\eta^4)$

- Minima for potential was at $\phi = \pm v$, where $v = \sqrt{-\mu^2/\lambda}$.
- Let us expand about this minima $\phi(x)=v+\eta(x)$ (η are quantum fluctuations about minima)
- ► This gives $\mathcal{L} = \frac{1}{2}(\partial_{\mu}\eta)^2 \lambda v^2 \eta^2 \mathcal{O}(\eta^3) \mathcal{O}(\eta^4)$
- ▶ Reflection symmetry broken by choice of ground state. (i.e. no longer symmetric under $\phi \rightarrow -\phi$.

- Minima for potential was at $\phi = \pm v$, where $v = \sqrt{-\mu^2/\lambda}$.
- Let us expand about this minima $\phi(x)=v+\eta(x)$ (η are quantum fluctuations about minima)
- ► This gives $\mathcal{L} = \frac{1}{2}(\partial_{\mu}\eta)^2 \lambda v^2\eta^2 \mathcal{O}(\eta^3) \mathcal{O}(\eta^4)$
- ▶ Reflection symmetry broken by choice of ground state. (i.e. no longer symmetric under $\phi \to -\phi$.
- We got a mass term for η field $(m_{\eta} = \sqrt{2\lambda v^2})$.

- Minima for potential was at $\phi = \pm v$, where $v = \sqrt{-\mu^2/\lambda}$.
- Let us expand about this minima $\phi(x)=v+\eta(x)$ (η are quantum fluctuations about minima)
- ► This gives $\mathcal{L} = \frac{1}{2}(\partial_{\mu}\eta)^2 \lambda v^2\eta^2 \mathcal{O}(\eta^3) \mathcal{O}(\eta^4)$
- ▶ Reflection symmetry broken by choice of ground state. (i.e. no longer symmetric under $\phi \rightarrow -\phi$.
- We got a mass term for η field $(m_{\eta} = \sqrt{2\lambda v^2})$.
- These two Lagrangians are the same and should lead to same physics.
- Feynman rules is a perturbative process, thus needs to be defined about stable minima.

- Minima for potential was at $\phi = \pm v$, where $v = \sqrt{-\mu^2/\lambda}$.
- Let us expand about this minima $\phi(x)=v+\eta(x)$ (η are quantum fluctuations about minima)
- ► This gives $\mathcal{L} = \frac{1}{2}(\partial_{\mu}\eta)^2 \lambda v^2\eta^2 \mathcal{O}(\eta^3) \mathcal{O}(\eta^4)$
- ▶ Reflection symmetry broken by choice of ground state. (i.e. no longer symmetric under $\phi \rightarrow -\phi$.
- We got a mass term for η field $(m_{\eta} = \sqrt{2\lambda v^2})$.
- These two Lagrangians are the same and should lead to same physics.
- Feynman rules is a perturbative process, thus needs to be defined about stable minima.
- This mass was generated (or revealed) by spontaneous symmetry breaking.

▶ Repeat for a complex scalar field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$ with

$$\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) - \mu^2\phi^*\phi - \lambda(\phi^*\phi)^2$$

▶ Repeat for a complex scalar field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$ with

$$\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) - \mu^2\phi^*\phi - \lambda(\phi^*\phi)^2$$

▶ Require invariance under $\phi \to e^{i\theta}\phi$ (U(1) global gauge symmetry).

• Repeat for a complex scalar field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$ with

$$\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) - \mu^2\phi^*\phi - \lambda(\phi^*\phi)^2$$

- ▶ Require invariance under $\phi \to e^{i\theta} \phi$ (U(1) global gauge symmetry).
- ▶ Here we have a circle of minima $\phi_1^2 + \phi_2^2 = v^2$, with $v^2 = -\mu^2/\lambda$.
- $lackbox{ Expand around minimum, } \phi(x) = \sqrt{\frac{1}{2}} \left[v + \eta(x) + i \xi(x) \right]$

• Repeat for a complex scalar field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$ with

$$\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) - \mu^2\phi^*\phi - \lambda(\phi^*\phi)^2$$

- Require invariance under $\phi \to e^{i\theta} \phi$ (U(1) global gauge symmetry).
- ► Here we have a circle of minima $\phi_1^2 + \phi_2^2 = v^2$, with $v^2 = -\mu^2/\lambda$.
- \blacktriangleright Expand around minimum, $\phi(x) = \sqrt{\frac{1}{2}} \left[v + \eta(x) + i \xi(x) \right]$

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \xi)^2 + \frac{1}{2} (\partial_{\mu} \eta)^2 + \mu^2 \eta^2 + \text{const} + \text{cubic/quartic terms in } \eta, \xi$$

▶ Mass term for η field as expected.

Repeat for a complex scalar field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$ with

$$\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) - \mu^2\phi^*\phi - \lambda(\phi^*\phi)^2$$

- Require invariance under $\phi \to e^{i\theta} \phi$ (U(1) global gauge symmetry).
- ► Here we have a circle of minima $\phi_1^2 + \phi_2^2 = v^2$, with $v^2 = -\mu^2/\lambda$.
- \blacktriangleright Expand around minimum, $\phi(x) = \sqrt{\frac{1}{2}} \left[v + \eta(x) + i \xi(x) \right]$

$$\mathcal{L} = \frac{1}{2}(\partial_{\mu}\xi)^{2} + \frac{1}{2}(\partial_{\mu}\eta)^{2} + \mu^{2}\eta^{2} + \text{const} + \text{cubic/quartic terms in } \eta, \xi$$

- Mass term for η field as expected.
- ▶ But also a kinetic term for ξ ... where is the mass term?

▶ Repeat for a complex scalar field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$ with

$$\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) - \mu^2\phi^*\phi - \lambda(\phi^*\phi)^2$$

- ▶ Require invariance under $\phi \to e^{i\theta} \phi$ (U(1) global gauge symmetry).
- ► Here we have a circle of minima $\phi_1^2 + \phi_2^2 = v^2$, with $v^2 = -\mu^2/\lambda$.
- \blacktriangleright Expand around minimum, $\phi(x) = \sqrt{\frac{1}{2}} \left[v + \eta(x) + i \xi(x) \right]$

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \xi)^2 + \frac{1}{2} (\partial_{\mu} \eta)^2 + \mu^2 \eta^2 + \text{const} + \text{cubic/quartic terms in } \eta, \xi$$

- Mass term for η field as expected.
- ▶ But also a kinetic term for ξ ... where is the mass term?
- SSB of global continous symmetry gives rise to one or more massless scalar spin-0 bosons called as Goldstone bosons.

- Now we apply this procedure.
- Take a non-zero ground state of the Lagrangian (a broken symmetry).
- ▶ Require local gauge invariance of the Lagrangian.

- Now we apply this procedure.
- Take a non-zero ground state of the Lagrangian (a broken symmetry).
- ▶ Require local gauge invariance of the Lagrangian.
- ▶ This gets us massive gauge fields + massless Goldstone bosons.

- Now we apply this procedure.
- Take a non-zero ground state of the Lagrangian (a broken symmetry).
- Require local gauge invariance of the Lagrangian.
- ▶ This gets us massive gauge fields + massless Goldstone bosons.
- ▶ What it effectively means is that by giving mass to gauge fields, we increased the polarization degrees of freedom from 2 to 3. The extra degree of freedom only corresponds to freedom to make a gauge transformation.

- Now we apply this procedure.
- Take a non-zero ground state of the Lagrangian (a broken symmetry).
- Require local gauge invariance of the Lagrangian.
- ▶ This gets us massive gauge fields + massless Goldstone bosons.
- ▶ What it effectively means is that by giving mass to gauge fields, we increased the polarization degrees of freedom from 2 to 3. The extra degree of freedom only corresponds to freedom to make a gauge transformation.
- ▶ Exploiting gauge freedom, we can get rid of Goldstone boson, but we are left with a massive scalar particle Higgs (+ the massive gauge fields as before).

- Now we apply this procedure.
- Take a non-zero ground state of the Lagrangian (a broken symmetry).
- Require local gauge invariance of the Lagrangian.
- ▶ This gets us massive gauge fields + massless Goldstone bosons.
- What it effectively means is that by giving mass to gauge fields, we increased the polarization degrees of freedom from 2 to 3. The extra degree of freedom only corresponds to freedom to make a gauge transformation.
- Exploiting gauge freedom, we can get rid of Goldstone boson, but we are left with a massive scalar particle Higgs (+ the massive gauge fields as before).
- Unwanted massless Goldstone boson turned into longitudinal polarization of the massive gauge particles.
- ▶ Very approachable discussion in Halzen/Martin Chapter 13/14.