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Klein Gordon equation

For the Schrodinger equation, we start with % +V = FE and add
operators.. 7 — —ihV and E = ihd/ot.
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Klein Gordon equation

For the Schrodinger equation, we start with 2 + V = FE and add

operators.. j— —ihV and E = ihd/ot. Thls gives us the Schrodinger
equation

h?_, L0
—o VA VY =iy

For the KG equation, we could start from E? — p%¢? = m?c* But lets
start from easier notation p*p, — m?c? = 0.

Here z,, is a covariant vector, with z#* = giVx" as a contravariant vector
and g"¥ is a 4 x 4 matrix.
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Klein Gordon equation

For the Schrodinger equation, we start with % +V = FE and add
operators.. j— —ihV and E = ithd/0t. This gives us the Schrodinger
equation

h?_, L0
—o VA VY =iy

For the KG equation, we could start from E? — p%¢? = m?c* But lets
start from easier notation p*p, — m?c? = 0.

Here z,, is a covariant vector, with z#* = giVx" as a contravariant vector
and g"¥ is a 4 x 4 matrix.

We have p,, = ih0,, where 0,, = %. Explicitly, 0y = %%, o =7,
"
and so on.
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Klein Gordon equation
Take pp, — m?c* = 0 and put p — ik,
~h*0"0, —m*c® =0

_aualﬂp = <7;,:20> (0
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Klein Gordon equation
Take ptp, —m?c* =0 and put p — ihd,
~h*0"0, —m*c® =0

_auauw = <7;;2C> (0

This gives us the free particle Klein Gordon equation

1 02
c2 Ot?

b ()’
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Klein Gordon equation

Take ptp, —m?c* =0 and put p — ihd,

This gives us the free particle Klein Gordon equation

We can define the D'Alembertian operator 0*0,, = [J, and along with

~h*0"9, —m*c? =0

_auauw = <7;;2C> (0
2 - 2
“aat V= (F) v

h =c =1, we get a neat equation

O =

1 9?

2 912

V2.

(O+m?) =0
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Problems with KG equation

» Second-order time derivative gives rise to negative energy
plane wave solutions, and negative probabilities.

» Dirac tried to fix this by looking for equation that has first
order derivatives in time.

» KG equation works for spin 0 particles, Dirac equation for

.1 .
sp|n-§ particles.
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Dirac equation

Start by factorizing p*p, — m?c? =0
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Dirac equation
Start by factorizing p*p, — m?c? =0

If its just p°, we could have (p°)%2 — m?2c? = (p° + mc)(p® — mc).
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Dirac equation

Start by factorizing p*p, — m?c? =0
If its just p°, we could have (p°)? — m?2c? = (p° + mc)(p® — mc).But

including spatial components, we need

P'pu —m?c? = (B%py + me)(7 px — me)
2 2

= 85y pepa — me(BY — 4F)pi, — m?c
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Dirac equation
Start by factorizing p*p, — m?c? =0

If its just p°, we could have (p°)? — m?2c? = (p° + mc)(p® — mc).But
including spatial components, we need

P, — m2? = (ﬂkpk + mc)(fy)‘p,\ — me)
= By prpx — me(BF — +F)pp — m?c?

Now we dont want any linear terms in py, (it wont factorize), so we need
B¥ = ~*. So we have ptp, = v 7 prpa.

5/23



Dirac equation
Start by factorizing p*p, — m?c? =0

If its just p°, we could have (p°)? — m?2c? = (p° + mc)(p® — mc).But
including spatial components, we need

P, — m2? = (ﬂkpk + mc)(fy)‘p,\ — me)
= By prpx — me(BF — +F)pp — m?c?

Now we dont want any linear terms in py, (it wont factorize), so we need
B* =~*. So we have ptp, = v v pyps. Thus

)2 =)= = (20" = (V)2 = (V)PP - (V)2 (p*)?
+ 9%y pop1 + ¥°2pop2 + ¥°7 pops
+719 pops + -+

We want to get rid of the cross terms, i.e. (7°y* +~v14)pops.
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Dirac equation
If {A,B} = AB + BA, we want

{77} = 29"

This is the Clifford algebra and the 's are matrices. The smallest set are
4 x 4 matrices.
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Dirac equation
If {A,B} = AB + BA, we want

{7} = 29"

This is the Clifford algebra and the 's are matrices. The smallest set are

4 x 4 matrices.
0 __ ]. 0 i 0 O'i
Tl —1) 7T T =6t 0

where o are Pauli spin matrices, (1 implies the identity matrix). This is
the Bjorken and Drell representation.

6/23



Dirac equation
If {A,B} = AB + BA, we want
{7} = 29"

This is the Clifford algebra and the 's are matrices. The smallest set are

4 x 4 matrices.
0 __ ]. 0 i 0 O'i
Tl —1) 7T T =6t 0

where o are Pauli spin matrices, (1 implies the identity matrix). This is
the Bjorken and Drell representation.

00

That is Y991 + 4190 =0, 499° = 1, 419t = 4292 = 4343 = —1.

Define 7° = 70414243 = 0 , Note that {*,~%} = 0.
Y VY 1 O
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Dirac equation

ppy — m*c = (¥ +me)(y pa = me) =0
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Dirac equation

ppy — m*c = (¥ +me)(y pa = me) =0

Conventionally we take v*p, —mc = 0. Put in p, = —ih0,, and we get
the Dirac equation

‘ihy“@uw—mc ) = O‘
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Dirac equation

P — m?*c® = (¥ pe + me) (7 pr = me) =0

Conventionally we take v*p, —mc = 0. Put in p, = —ih0,, and we get
the Dirac equation

\mwaw —mec Y = O‘

Now this 1 is a four-element column vector, called Dirac spinor or

bispinor. 1
o- (3
P4

We write this as [ (s
ha = (1/)2) Yp = <¢4>

14 and Yp are two component spinors representing electrons, positrons.
e~ T
— [ e 4
w - €+¢

etr
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Plane-wave solutions

Write plane-wave solutions to Dirac equation ((iv*0, —m) 1 = 0)

% Y(x) = ae” P ou(p)

Here x, p are 4-vectors and u(p) is a bispinor, such that v satisfies
Dirac equation.
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Plane-wave solutions
Write plane-wave solutions to Dirac equation ((iv*0, —m) 1 = 0)
as :
U(z) = ae” " u(p)

Here x, p are 4-vectors and u(p) is a bispinor, such that v satisfies
Dirac equation.
Putting it into Dirac equation gives

and
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Plane-wave solutions

1

0
u(l) =N Pz
E+m
Pz +ipy
E+m

0

1
2
’LL( ) - N Pz —1Dy
E+m
—Pz
E+m

= ae~ %y (particles)
(P —m)u =0

<

Pz *ipy

Pz

D +1iPy

Y = ae™P v (antiparticles)

(Ypu+m)v =0
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Adjoint spinor

Now %4 is not Lorentz invariant.
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Adjoint spinor
Now 1T is not Lorentz invariant. We define an adjoint bispinor as
1/} = TZJTVO = (wfa 1/};7 _wga —1/12)

The quantity ¢) = ¢T7%) is Lorentz invariant (i.e. a scalar).
(Note: ) = [91[*+|tha|* —[s]*—|vpa ).
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Adjoint spinor

Now 1T is not Lorentz invariant. We define an adjoint bispinor as
Y= W’YO - (wfv 1/};’ _w;;? _1/)2)

The quantity ¢) = ¢T7%) is Lorentz invariant (i.e. a scalar).
(Note: ) = [91[*+|tha|* —[s]*—|vpa ).

We can thus write

) scalar

Py pseudoscalar
PyHap vector (4-components)

1[)7“757# pseudovector (4-components)
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1) transform

If 9 is a Dirac spinor, then if you go from a stationary frame to
frame moving with speed v in x-direction

Y= =S
where S is a 4 X 4 matrix
S=a;+a "y

with
1
ay ==+ 5(’7 +1)

Note that this last v = 1/4/1 — v?/c2.
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Lagrangian density

» In CM, we have L(q;,q;), and Euler Lagrange equations are

d (9L _ 0L
dt \9¢; ) ~ Oqi
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Lagrangian density

» In CM, we have L(q;,q;), and Euler Lagrange equations are
d (oL\ _ 0L
dt an - a(h

» Here we start with a Lagrangian density £(¢;, %,x#), where ¢; are the
©
fields

12/23



Lagrangian density

» In CM, we have L(q;,q;), and Euler Lagrange equations are
d (oL\ _ 0L
dt an - qu

» Here we start with a Lagrangian density £(¢;, %,x#), where ¢; are the

8( c )_ac
"\0(0udi) ) 0

fields and we apply

to get the EOM.
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Lagrangian density

» In CM, we have L(q;,q;), and Euler Lagrange equations are
d (oL\ _ 0L
dt an - qu

» Here we start with a Lagrangian density £(¢;, %,x#), where ¢; are the

fields and we apply
o () = 2
"\ 0(0,.0:) 0

to get the EOM.
» Thus Dirac Lagrangian

L= i@v“aw - WW
gives the Dirac equation
YO —map =0

> Notice the mass term.
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Maxwell equations

-,

» The 4-potential is A* = (¢/c, A)
> FH is the field strength tensor.. explicitly

0 —E./c —Ey/c
E./c 0 —B.
Ey/c BZ 0
E./c —By B.

=

—E./c

— B,
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Maxwell equations

-,

» The 4-potential is A* = (¢/c, A)
> FH is the field strength tensor.. explicitly

0 —E./c —E,/c —E./c

v _ | Befe 0 ~-B. B,
o Ey/c BZ 0 —Bz
E./c —B, B, 0
1

> If we start with £ = *ZFWFW —j* A, we get 0, F" = j".
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Maxwell equations

-,

» The 4-potential is A* = (¢/c, A)
> FH is the field strength tensor.. explicitly

0 —E./c —E,/c —E./c
puv _ | Bofe 0O _B. B,
o Ey/c BZ 0 —Bz
E./c —By B. 0
1

> If we start with £ = *ZFWFW —j* A, we get 9, F" = j".

> If we add to £ a term like %mQA,LA“, we get the KG equation
(O% + m?) A+ = j~.
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Maxwell equations

-,

» The 4-potential is A* = (¢/c, A)
> FH is the field strength tensor.. explicitly

0 —E./c —E,/c —E./c

. E./c 0 —B. By
o Ey/c BZ 0 —Bz
E./c —B, B, 0

. 1 . .
> If we start with £ = *ZFWFW —j* A, we get 9, F" = j".

L1 .
> If we add to £ a term like §m2A,LA“, we get the KG equation
(O% + m?) A = j+.
» Feynman rules follow from terms in the Lagrangian (quadratic in fields
gives propagators, vertices from interactions).
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Gauge invariance

> A global phase transform is 1) — e*%1).
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Gauge invariance

» A global phase transform is i) — ee).

» Gauge invariance implies that we cannot determine absolute phase
(translational invariance means cannot determine absolute position). A
global gauge is that the global value is fixed (and is a freedom for us).
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Gauge

Invariance

A global phase transform is ) — ee).

Gauge invariance implies that we cannot determine absolute phase
(translational invariance means cannot determine absolute position). A
global gauge is that the global value is fixed (and is a freedom for us).

In general, this phase can vary from point to point, i.e. 6 = 0(x).

Now if we apply a local phase transformation ¢ — ew(z)w and require
that the Lagrangian remain invariant, then we must add terms to

Lagrangian to cancel the derivatives from the Euler-Lagrange equations.
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Gauge invariance

» A global phase transform is i) — ee).

» Gauge invariance implies that we cannot determine absolute phase
(translational invariance means cannot determine absolute position). A
global gauge is that the global value is fixed (and is a freedom for us).

» In general, this phase can vary from point to point, i.e. 8 = 6(z).

» Now if we apply a local phase transformation ¥ — ew(z)w and require
that the Lagrangian remain invariant, then we must add terms to
Lagrangian to cancel the derivatives from the Euler-Lagrange equations.

» Thus if £ = ithy*d,1 — mapyp, this isn’t invariant under local gauge
transformation. ‘ .
0, = @8, + e ™o, 0
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Gauge invariance

» A global phase transform is i) — ee).

» Gauge invariance implies that we cannot determine absolute phase
(translational invariance means cannot determine absolute position). A
global gauge is that the global value is fixed (and is a freedom for us).

» In general, this phase can vary from point to point, i.e. 8 = 6(z).

» Now if we apply a local phase transformation ¥ — ew(z)w and require
that the Lagrangian remain invariant, then we must add terms to
Lagrangian to cancel the derivatives from the Euler-Lagrange equations.

» Thus if £ = ithy*d,1 — mapyp, this isn’t invariant under local gauge
transformation. ‘ .
0, = @8, + e ™o, 0

» To maintain invariance of the Lagrangian, what we need is some new
covariant derivative such that D1 — ) D1,
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Gauge field

» Such a covariant derivative for QED is
D, =0, —ieA,
where the field A, transforms as

Ay — Au+ éaﬁ
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Gauge field
» Such a covariant derivative for QED is
D, =0, —ieA,
where the field A, transforms as

1
A” — A# + an‘)
» The Lagrangian is now

L= i?ﬁv”Dud) - mt/_ﬂb
= zﬁ(i’y”@u -m)y + 6%“1/)14#
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Gauge field

>

Such a covariant derivative for QED is
D, =0, —ieA,
where the field A, transforms as

Ay — Au+ %6#0

The Lagrangian is now
L= i&'YuDM/) - md—)w
= P(i7" 0 — m)Y + ey Y Ay

Local phase invariance forced us to add vector gauge field coupling to
particles.
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Gauge

>

v

v

vy

field

Such a covariant derivative for QED is
D, =0, —ieA,
where the field A, transforms as

AMaA#+%@e

The Lagrangian is now

L= i&'YuDM/) - md—)w
= P(iy" 0 — m)Y + ey A,
Local phase invariance forced us to add vector gauge field coupling to
particles.
If A, is wavefunction of photon, need a term for its kinetic energy.

Only way to add it is in terms of F,,.

_ - 1
L =Py O — m)Y + ey P A, — ZFMVFMV
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Gauge theories

Thus applying local phase invariance to Dirac Lagrangian generates all of ED.
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Gauge theories

Thus applying local phase invariance to Dirac Lagrangian generates all of ED.
The Feynman rules for QED look like this

>
>

vVvyVvYy VvYy

Notation (p's and ¢'s)

External lines: electrons get u (incoming) or @ outgoing, positrons get ¥
(incoming) or v (outgoing), and photons get a ¢, (incoming), €},
(outgoing) (A, (z) = ae~/MP=¢(®) is photon wave function)
Each vertex gets igey"

. (y
Proagators are: electrons/positrons %, and for photons

—iguv
—m=c 2

Conservation of energy/momentum at each vertex
Integrate over internal momenta

Cancel the final § function.
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Gauge theories

e 'y e 'y
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Gauge theories

e 'y e 'y

62

My = =557 m)Ew e)

— v Vﬂ_kl/kﬂ M2 — O
Mz =——F [y (cv —can’) ] (‘qkz_—Méz) [e 77 (cv —ca ¥°) €]
4
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Gauge theories

e 'y e 'y

62

My = =557 m)Ew e)

2

Mz =-—I [y (ev —can®) 4] (

_ guo _kl/kU/Mé I:,
4 cos? Ow

o 5
kZ_M% e’Y(CV7CA’Y)€}

Here k is the four momentum of the virtual v or Z (s = k?). The weak vertex

factor is —i - G—" 3 (c{, - c£75>,
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Gauge theories

e 'y e 'y
2

My =5 @7 WEw e)

Mz = *74%‘22 o [ 7" (cv —cav”) u (gwk_z ]ijﬁzéMé) [e77(cv —ca”’) €]
Here k is the four momentum of the virtual v or Z (s = k?). The weak vertex
factor is —icosggw 'y“% (c{, — c£75>, and O is the weak mixing angle.

Ay = By cosOw + W, sin Oy (massless)

Z, = —Businfw + W) cosy  (massive)

17/23



Gauge theories

» Applying similar ideas of local gauge invariance can yield the other forces
as well (Strong as well as weak).
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Gauge theories

» Applying similar ideas of local gauge invariance can yield the other forces
as well (Strong as well as weak).

» Three massless fields of spin-1 (when we insist on local SU(2) invariance).

» Similarly applying to SU(3) we get eight massless spin-1 bosons.
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Gauge theories

» Applying similar ideas of local gauge invariance can yield the other forces
as well (Strong as well as weak).

» Three massless fields of spin-1 (when we insist on local SU(2) invariance).
» Similarly applying to SU(3) we get eight massless spin-1 bosons.

We can’t add mass terms to Lagrangian like M?W,W*" because it makes the
theory non-renormalizable. Thus while QCD is okay, for the weak interaction,
to get massive bosons, we have to do something else.
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Generating mass

» Consider L=T -V = @@f—%ﬁ&+imﬂ

N | =
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Generating mass

>chaczT—V:%@@f—%ﬁ&+imﬂ

> For y? > 0, potential looks like below (and there is a regular mass term)
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Generating mass

>chaczT—V:%@@f—%ﬁ&+imﬂ

» For ;2 < 0, potential looks like below and minimum is not at zero.
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SSB

» Minima for potential was at ¢ = v, where v = /—pu?/\.

> Let us expand about this minima ¢(z) = v + n(z) (1 are quantum
fluctuations about minima)
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SSB

» Minima for potential was at ¢ = v, where v = /—pu?/\.

> Let us expand about this minima ¢(z) = v + n(z) (1 are quantum
fluctuations about minima)

» This gives £ = %(OHU)Q —x?p? —0(n*) — O(n*)
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SSB

Minima for potential was at ¢ = v, where v = /—pu?/\.

Let us expand about this minima ¢(z) = v + n(x) (n are quantum
fluctuations about minima)

This gives £ = %(OHU)Q —x?p? —0(n*) — O(n*)

Reflection symmetry broken by choice of ground state. (i.e. no longer
symmetric under ¢ — —¢.
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Let us expand about this minima ¢(z) = v + n(x) (n are quantum
fluctuations about minima)

This gives £ = %(OHU)Q —x?p? —0(n*) — O(n*)

Reflection symmetry broken by choice of ground state. (i.e. no longer
symmetric under ¢ — —¢.

We got a mass term for 7 field (m, = V2Av?).
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SSB

» Minima for potential was at ¢ = v, where v = /—pu?/\.

> Let us expand about this minima ¢(z) = v + n(z) (1 are quantum
fluctuations about minima)

L 1

» This gives £ = 5(8/”7)2 — 2?2 —O0@m*) — O(n*)

> Reflection symmetry broken by choice of ground state. (i.e. no longer
symmetric under ¢ — —¢.

» We got a mass term for 7 field (m, = V2Av?).

» These two Lagrangians are the same and should lead to same physics.

» Feynman rules is a perturbative process, thus needs to be defined about
stable minima.
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SSB

Minima for potential was at ¢ = v, where v = /—pu?/\.
Let us expand about this minima ¢(z) = v + n(x) (n are quantum
fluctuations about minima)
L 1
This gives £ = E(G,J])Q — 2?2 —O0@m*) — O(n*)
Reflection symmetry broken by choice of ground state. (i.e. no longer
symmetric under ¢ — —¢.
We got a mass term for 7 field (m, = V2Av?).
These two Lagrangians are the same and should lead to same physics.

Feynman rules is a perturbative process, thus needs to be defined about
stable minima.

This mass was generated (or revealed) by spontaneous symmetry
breaking.
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SSB of Global symmetry

» Repeat for a complex scalar field ¢ = (¢1 + i2)/+/2 with

L= (0,0)(0"¢) — n’¢" ¢ — N(¢"0)*
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SSB of Global symmetry

» Repeat for a complex scalar field ¢ = (¢1 + i2)/+/2 with

L= (0,0)(0"¢) — n’¢" ¢ — N(¢"0)*

> Require invariance under ¢ — €*¢ (U(1) global gauge symmetry).
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SSB of Global symmetry

» Repeat for a complex scalar field ¢ = (¢1 + i2)/+/2 with

L= (0,0)(0"¢) — n’¢" ¢ — N(¢"0)*

> Require invariance under ¢ — €*¢ (U(1) global gauge symmetry).

» Here we have a circle of minima ¢3 + ¢3 = v?, with v* = —p?/)\.

» Expand around minimum, ¢(z) = \/g[w + n(z) + & (x)]
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SSB of Global symmetry

» Repeat for a complex scalar field ¢ = (¢1 + i2)/+/2 with
L= (0u0)"(0") — W¢"¢ — M@"0)°

> Require invariance under ¢ — €*¢ (U(1) global gauge symmetry).
» Here we have a circle of minima ¢7 + ¢3 = v?, with v? = —MQ/)\.
» Expand around minimum, ¢(z) = \/g[l) + n(z) + i&(x)]

1
= 5( 9,6)* + ( d,m)? + p*n’ + const + cubic/quartic terms in 7, £

» Mass term for 7 field as expected.
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SSB of Global symmetry

» Repeat for a complex scalar field ¢ = (¢1 + i2)/+/2 with
L= (0u0)"(0") — W¢"¢ — M@"0)°

> Require invariance under ¢ — €*¢ (U(1) global gauge symmetry).

» Here we have a circle of minima ¢3 + ¢3 = v?, with v* = —p?/)\.

» Expand around minimum, ¢(z) = \/g[v + n(z) + & (x)]

1
= 5( 9,6)* + ( d,m)? + p*n’ + const + cubic/quartic terms in 7, £

» Mass term for 7 field as expected.

» But also a kinetic term for £ ... where is the mass term?
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SSB of Global symmetry

» Repeat for a complex scalar field ¢ = (¢1 + i2)/+/2 with
L= (0u0)"(0") — W¢"¢ — M@"0)°

> Require invariance under ¢ — €*¢ (U(1) global gauge symmetry).

» Here we have a circle of minima ¢3 + ¢3 = v?, with v* = —p?/)\.

» Expand around minimum, ¢(z) = \/g[v + n(z) + & (x)]

1
= 5( 9,6)* + ( d,m)? + p*n’ + const + cubic/quartic terms in 7, £

» Mass term for 7 field as expected.
» But also a kinetic term for £ ... where is the mass term?

» SSB of global continous symmetry gives rise to one or more massless
scalar spin-0 bosons called as Goldstone bosons.
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Higgs mechanism

» Now we apply this procedure.
> Take a non-zero ground state of the Lagrangian (a broken symmetry).

» Require local gauge invariance of the Lagrangian.
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Higgs mechanism

» Now we apply this procedure.
> Take a non-zero ground state of the Lagrangian (a broken symmetry).
» Require local gauge invariance of the Lagrangian.

» This gets us massive gauge fields + massless Goldstone bosons.
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Higgs mechanism

>

>
>
>
>

Now we apply this procedure.

Take a non-zero ground state of the Lagrangian (a broken symmetry).
Require local gauge invariance of the Lagrangian.

This gets us massive gauge fields + massless Goldstone bosons.

What it effectively means is that by giving mass to gauge fields, we
increased the polarization degrees of freedom from 2 to 3. The extra
degree of freedom only corresponds to freedom to make a gauge
transformation.
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Higgs mechanism

vV VvyVvVvyy

Now we apply this procedure.

Take a non-zero ground state of the Lagrangian (a broken symmetry).
Require local gauge invariance of the Lagrangian.

This gets us massive gauge fields + massless Goldstone bosons.

What it effectively means is that by giving mass to gauge fields, we
increased the polarization degrees of freedom from 2 to 3. The extra
degree of freedom only corresponds to freedom to make a gauge
transformation.

Exploiting gauge freedom, we can get rid of Goldstone boson, but we are
left with a massive scalar particle Higgs (+ the massive gauge fields as
before).
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Higgs mechanism

vV VvyVvVvyy

Now we apply this procedure.

Take a non-zero ground state of the Lagrangian (a broken symmetry).
Require local gauge invariance of the Lagrangian.

This gets us massive gauge fields + massless Goldstone bosons.

What it effectively means is that by giving mass to gauge fields, we
increased the polarization degrees of freedom from 2 to 3. The extra
degree of freedom only corresponds to freedom to make a gauge
transformation.

Exploiting gauge freedom, we can get rid of Goldstone boson, but we are
left with a massive scalar particle Higgs (+ the massive gauge fields as
before).

Unwanted massless Goldstone boson turned into longitudinal polarization
of the massive gauge particles.

Very approachable discussion in Halzen/Martin Chapter 13/14.
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