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Nuclear Physics
▶ Nuclei arise when protons and neutrons bind to each other

due to strong force.
▶ A nuclear species is characterized by total positive charge and

the total number of mass units. The nuclear charge = +Ze,
where Z is the atomic number. That is, the nucleus has Z
protons.

▶ The mass number A of a nuclear species is the total number
of nucleons. A = Z protons +(A − Z ) neutrons. Sometimes
N used for number of neutrons.

A specific nuclear species, or nuclide, is written as A
Z XN .

For example, 238
92 U146 or 1

1H0, or 56
26Fe30.

But sometimes just AX, so 238U , where U tells us that Z = 92,
and thus A − Z = N = 146.
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Terms
▶ Isotopes: Nuclides with same proton number, but different

neutron numbers.
For example, 35Cl and 37Cl

▶ Isotones: Nuclides with same neutron number, but different
proton numbers.
For example, 2H and 3He

▶ Isobars: Nuclides with same mass number A
For example, 3He and 3H

More than 5000 nuclides have been characterized, with about 251
stable nuclides.
Heaviest stable nucleus is 210

82 Pb.
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Properties
The properties of nuclides that we would be interested in would be

Mass, Radius, Relative abundance (for stable nuclides), Decay
modes and half life (for unstable nuclides), Reaction modes and
cross sections, spin, magnetic moment, etc.
We are also interested in what makes a particular nuclide stable,
and what are the patterns of stable nuclei.

Nuclear masses are measured in terms of unified atomic mass unit
u. It is defined such that the mass of an atom of 12C = 12u.
The nucleons are thus typically of mass 1u = 931.502 MeV.
Mass of proton mp = 938.27 MeV = 1.00727 u
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Size
We need an operational definition of size. We can characterize
nuclear shape with two parameters.
▶ mean radius: where density is half of central value
▶ skin thickness: density drops from near max to its min.

These depend on the experiment.

So we shall consider two things:
distribution of nuclear charge (which is probed using EM
interaction), and
distribution of nuclear matter (probed using strong interaction)
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Nuclear charge distribution
▶ We can scatter electrons elastically from a nuclear target -

this acts like diffraction from a circular disk of diameter D,
with first minimum at θ = sin−1(1.22λ/D). This roughly
gives 16O as 2.6 fm, and 12C as 2.3 fm.

▶ We can do something qualitative: let the initial electron
wavefn be eiki r , and final electron be eikf r . where p = hk.

▶ The interaction potential V (r) says that probability of
transition from initial i to final f is proportional to

F (ki , kf ) =
∫
ψ∗

f V (r)ψidV

▶ Rewrite with q = kf − ki , and using V (r) as EM interaction
(nuclear charge density Zeρe(r ′)) gives us

F (q) =
∫

eiqr ′
ρe(r ′)dv ′
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Nuclear charge distribution
Here F (q) is known as the form factor for the nucleus.

For radial ρe(r ′), we get

F (q) = 4π
q

∫
sin qr ′ρe(r ′)r ′dr ′

We measure scattering prob.
between pi and pf as function of
scattering angle, and for various
nuclei.

We see that number of nucleons per unit volume is roughly
constant. This gives us a relatively simple empirical formula for size

R(A) ∼ 1.2A
1
3 fermi

The skin thickness is typically 2.3 fm.
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Nuclear matter distribution
▶ Scatter an α-particle (4He) from say 197Au. Low energies →

Coulomb force, (Rutherford scattering). At higher energies,
Coulomb repulsion is overcome and nuclear forces act.

▶ Radioactive decay (α-particle emission). The α must escape
nuclear potential and penetrate a Coulomb barrier. α-decay
probabilities calculated from standard barrier-penetration
approach depend on nuclear matter radius R.

▶ π-mesic X rays: Fire pions at the nucleus. The π meson
wavefn overlaps with nucleus, and shifts energy levels from
values calculated using Coulomb interaction. Pions can also
be absorbed into the nucleus, and one can study
“disappearance rate”

Turns out that charge and matter radii are nearly equal to within
0.1 fm. Inside the nucleus, neutrons and protons are mixed well.
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Binding energy
▶ Given A and Z , can we derive the mass of a nuclide?
▶ Experimentally, we find mass of nucleus < sum of its

constituents. Thus B.E is negative.
▶ B(A,Z ) = M(A,Z ) − Zmp − (A − Z )mn
▶ Then average binding energy per nucleon is |B|/A
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Some observations
▶ |B|/A is about 1 MeVfor 2

1H, but rises and is later constant
around 8 MeV

▶ Peaks at about 9 MeVfor 56
26Fe, 62Ni (very abundant in

planetary cores)
▶ |B|/A curve drops at small A: for small nuclei, greater

number of nucleons at surface, and are not surrounded by
other nucleons.

▶ |B|/A drops at large A: Coulomb effect depens on no. of
proton pairs (Z 2 increases faster than A and Coulomb
repulsion makes these nuclei less tightly bound.)
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Isotope vs Half-life

N(t) = N0e−t/τ

where N0 is the number of initial objects, and N(t) is the number
surviving after time t, and τ is the mean lifetime.

The half-life is the time t1/2 such that N(t1/2) = 1
2N0.

This gives us t1/2 = τ ln 2.

Deuteron 2
1H is stable, but Tritium nucleus 3

1H has a half-life of
12.32 years with the decay mode being

3
1H → 3

2He + e− + ν̄e (1)

Why 12.32 years? Neutron lifetime is minutes...
Here ∆M = 18.6 keV (but mn − mp = 1.29 MeV)
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Isotope vs Half-life
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Measuring mass
Measuring mass of a nuclide is tied into measuring its binding
energy. A Mass spectrometer is an important technique.

Ion source: produce ionized
atoms/molecules.
Velocity selector: crossed E⃗ and B⃗
fields.
Momentum selector: just a B⃗ field.

E⃗ has force upward, and B⃗ has force downward. Setting the two fields
such that the forces are balanced gives qE = qvB, and thus ions of
velocity v = E/B pass undeflected.
In the momentum selector, mv = qBr . This gives

m = qrB2

E
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Mass doublet method
Measuring all terms in m = qrB2/E to high precision is difficult for
different ions. Suppose we want to measure 1H in terms of u, and then
measure 14N. Resetting apparatus can be hard. Or finding the right ions.
▶ Fix apparatus for mass 128, and measure difference between C9H20

(nonane) and C10H8 (napthalene). We get
∆ = 0.09390032 ± 0.00000012 u

▶ Ignoring molecular binding energy (∼ 10−9u), we can write

∆ = m(C9H20) − m(C10H8) = 12m(1H) − m(12C)

Thus

m(1H) = 1
12
[
m(12C) + ∆

]
= 1.000000 + 1

12∆

= 1.00782503 ± 0.00000001u
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Mass doublet method
▶ Now set apparatus for mass 28, and measure difference between

C2H4 and N2. Obtain an expression for m(N2) in terms of known
masses (1H etc.).
( ∆ = m(C2H4) − m(N2) )

∆ = m(C2H4) − m(N2)
= 2m(12C) + 4m(1H) − 2m(14N)
= 0.025152196 ± 0.000000030u

m(14N) = m(12C) + 2m(1H) − 1
2∆

= 14.00307396 ± 0.00000002u

Mass spectrometer also allows us to measure relative abundances by
measuring the ion current for different masses.
One can also use it to collect a large quantity of a particular isotope by
setting for a single mass.
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Nuclear spins
▶ Nuclei are also classified according to whether the Z and N are even

or odd.
▶ Nuclei are classified as even-even (both Z ,N even) or odd-odd

(both Z ,N odd), or even-odd, odd-even.
▶ In even-even or odd-odd cases, A is even and thus spin of the

nucleus is integer.
▶ In odd-even or even-odd, A is odd, and nucleus has half-integer spin.

For example, 4
2He is a boson, while 3

2He is a fermion.
4
2He exhibits Bose-Einstein condensation and thus superfluidity when
cooled to low temperature (∼ 2.2K). 3

2He has to be cooled further
(∼ 2.5mK), where first bosonic Cooper pairs are formed before
condensing.

16 / 67



Nuclear spins
▶ In principle, a nucleus with 100 or 200 nucleons can have a spin as

high as 100h̄.
In fact, all even-even nuclei have spin 0. Thus half spins are paired
with other half!

▶ The range of spins can be deduced by measuring magnetic dipole
moments (µ).

▶ We have for a current loop due to a single particle of charge e and
mass m with radius r , µ = e

2m L. QM says µ = eh̄
2m ℓ.

▶ For fundamental particles, in analogy we write µ = g eh̄
2m s = g

2µB .
Here g is a dimensionless number called g-factor, and µB is the
Bohr magneton.

▶ The classical Dirac equation allows us to predict g = 2 which agrees
very well with experimental value. Additional quantum corrections
to the Dirac equation using QED allow us to reproduce the
experimentally measured value g = 2.002319.
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Nuclear spins
▶ For nuclei we define the nuclear magneton µN = eph̄

2mp
and we get

µp = 2.7928456µN and µn = −1.9130419µN for the proton and
neutron.

▶ The g-factors for them are gp = 5.5856912 ± 0.0000022 and
gN = −3.8260837 ± 0.0000018. These are considerably different
from 2! This can’t be just quantum corrections.. in some sense this
is evidence that the proton/neutron are composite particles.

▶ Nuclear magnetic moments are much smaller than electron.. thus at
atomic physics scale one is dominated by electron. Only completely
ionized atoms allow us to see the nuclear magnetic moment.

▶ Experimentally, nuclear magnetic moments range from −3µN to
+10µN . This is very different from naively expecting 200µN , and
thus large cancellations must be taking place.

▶ Note that all even-even nuclei are spinless and thus have no
magnetic moment.
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Nuclear stability
▶ For Z < 40, we see that N ≈ Z . For 56

26Fe, N = 1.15Z . For Z > 40,
the number of neutrons rises. For 222

86 Rn, N = 1.58Z .
▶ As number of protons increases, protons repel each other.. so we

need a proportionately larger number of neutrons to “dilute” the
protons.

▶ There are 156 stable even-even nuclei, only 5 stable odd-odd, and
about 50 each of odd-even, and even-odd. This suggests there is
some pairing mechanism at work.

Recall that we saw strong force is same whether its pp or pn or nn. We
also saw there are no nn bound states (motivated this using isospin). We
saw that only singlet state existed (|0, 0⟩ =

(
1√
2

)
(pn − np))
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Nuclear Stability

▶ Consider deuteron (pn). Its spin S can be ? 1, 0.
▶ We observe is that deuteron has s = 1 and ℓ = 0 (or 2).

There is no spinless deuteron.
▶ Binding tighter for aligned spins (⇈,⇊) rather than

anti-aligned (↑↓).
▶ Thus pair of neutrons must also need aligned spins to make

bound state.
▶ This violates Pauli’s exclusion principle (wave-function

antisymmetric under exchange for two-fermion system).
▶ Similarly no pp nuclei.
▶ Even-even are remarkably stable, consider 4

2He. Here the two
neutrons are ↑↓, two protons are ↑↓ and these combine.
‘Pairing’ accounts for spinless nature of all even-even nuclei.
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Nuclear Instability

▶ Unstable nuclei emit particles and aim to get stable: Radioactivity
▶ Typical well known types of radiation: α, β, γ.
▶ α-decay is a form of nuclear fission

A
Z X → A−4

Z−2X′ + 4
2He

238
92 U → 234

90 Th + 4
2He

▶ Typical KE of α particles is 5 MeV.
▶ α-decay is a tunnelling of a part of the nucleus out of the potential

barrier of the rest of the nucleus. It is a strong interaction.

21 / 67



Nuclear Instability
▶ Already seen β decay (n → p + e− + ν̄e).
▶ Nuclear process is

A
Z X → A

Z+1X′ + e− + ν̄e ; 14
6 C → 14

7 N

▶ Positron β decay

A
Z X → A

Z−1X′ + e+ + νe ; 23
12Mg → 23

11Na

▶ “Electron-capture” (a nuclear reaction appearing as decay)

A
Z X + e− → A

Z−1X′ + νe
81
36Kr + e− → 81

35Br + νe

▶ Typical energy release is of order 1 MeV.

All possibilities depend on the relative B.E. : need at least
0.511 MeV + mν . Often β-decay will follow from daughter of α-decay.
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Nuclear Instability

▶ γ-radiation is emission of photon from excited nucleus.
▶ EM process, energy range from 100 keV to 10 MeV.
▶ can happen soon after an α- or β-decay.

▶ We also have induced nuclear fission (α is spontaneous)

235
92 U + n → 89

36Kr + 144
56 Ba + 3n

▶ This releases ∼ 177 MeV (large energy), and can trigger a
chain reaction. (The 3n carry kinetic energy and further
induce fission in a sufficiently dense sample.
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Mass models

▶ Nuclear mass models are typically empirical or semi-emipirical.
▶ We shall examine three of them: Liquid drop model, Fermi gas

model, and Shell model
▶ Note that mass defect

∆M(A,Z ) = M(A,Z ) − Zmp − (A − Z )mn

Binding energy per nucleon

−B
A = −∆M(A,Z ) c2

A
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Liquid drop model

Observations:
▶ We see |B|/A is nearly constant in range 12 < A < 240 and that

size R ∼ A 1
3

▶ The constancy of |B|/A is a hint: if nuclear force due to A particles
interacting pairwise, then total energy of collection of A objects
would scale as ∼ A2 at large A.
Thus |B|/A would grow linearly with A (energy would scale as A2).

▶ But nuclear force is short-range: objects interact with only some
nearest neighbors - the force is “saturated”

▶ Let us treat the nucleus as incompressible liquid droplet of R ∼ A 1
3 .

▶ |B|/A peaks around 60. For A < 60, its favorable to assemble two
nuclei into larger one (fusion). For A > 60, its favorable for nucleus
to split (fission).
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Liquid drop model

Broadly we have
▶ More number of nucleons, more binding energy.
▶ More surface, less binding energy.

(less nearest neighbours)
▶ Higher Z , less binding energy.

(repulsion between protons)
▶ If N ̸= Z , less binding energy.
▶ Then we have even-even, odd-odd, and others.
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Liquid drop model

Broadly we have
▶ More number of nucleons, more binding energy. Volume term.
▶ More surface, less binding energy. Surface term.

(less nearest neighbours)
▶ Higher Z , less binding energy. Coulomb term.

(repulsion between protons)
▶ If N ̸= Z , less binding energy. Symmetry term.
▶ Then we have even-even, odd-odd, and others.
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Liquid drop model

▶ First term is just one for the saturated force. B = −av A
▶ Now we account for decrease of |B|/A for small A. Let us say that

there is an outer layer which is less tightly bound - this term will be
important at small A since surface to volume ratio will be large.
This term scales as R2, thus A 2

3

B = −av A + asA
2
3

This term reduces the B.
▶ Now the slow decrease of |B|/A at large A due to Coulomb

repulsion. This scales as Z (Z − 1)/R, so

B = −av A + asA
2
3 + ac

Z (Z − 1)
A 1

3

This is the form of the energy for a liquid drop. To go further we need to
incorporate other effects.
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Liquid drop model

▶ We know that for small A we have A = 2Z , and at large A, we have
A ∼ 2.5Z . We want to put in a term that reduces B when A ̸= 2Z .

▶ So we have symmetry term

B = −av A + asA
2
3 + ac

Z (Z − 1)
A 1

3
+ asym

(A − 2Z )2

A

Now we need to add one last term to prefer even-even (more stable) and
penalize odd-odd (less stable)
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Liquid drop model

Bethe-von Weizsäcker semi-empirical binding energy formula

B = −av A + asA
2
3 + ac

Z (Z − 1)
A 1

3
+ asym

(A − 2Z )2

A + ap

A 1
2

where experimentally we have

av = 15.8 MeV, as = 18.3 MeV, ac = 0.714 MeV
asym = 23.2 MeV, ap = ±12 or 0 MeV

where for ap, the + is for odd-odd (less stable) and − for even-even (less
stable) and 0 for others.
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Liquid-drop model
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Liquid-drop model

β-stability valley: Given A, how does B vary as function of Z?

49In : β−-decay to 50Sn
56Ba : β+-decay to 55Cs
52Te : stable.
53I : Electron capture to excited 52Te.
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Liquid-drop model

β-stability valley: Given A, how does B vary as function of Z?
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Liquid-drop model

β-stability valley: Given A, how does B vary as function of Z?

56
26Fe: very stable!
79
35Br stable. 79

34Se → 79
35Br + e− + ν̄e

101
44 Ru stable.
101
43 Tc has β− decay to 101Ru.
101
42 Mo → 101

43 Tc → 101
44 Ru

101
45 Rh undergoes EC to 101Ru.
101
46 Pd has β+ decay to 101Rh
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Liquid-drop model

▶ β-stability valley: Given A, how does B vary as function of Z?
▶ Add mass of constitutents M0 = (A − Z )mn + Z (mp + me).

▶ Then mass of bound state (for given A) is
M = Mconstituents − B

▶ Then mass of bound state (for given A) is

M = [Amn − Z (mn − mp − me)]

− av A + asA
2
3 + ac

Z (Z − 1)

A
1
3

+ asym
A2 − 4AZ + 4Z 2

A + ap

A 1
2

= α− βZ + γZ 2

where α, β, γ are coefficients.
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Liquid-drop model
▶ Parabola with minimum at ∂M

∂Z = 0, i.e. Zmin = β/2γ.
▶ Thus Zmin is integer closest to β/2γ.
▶ Say A is odd (odd-even/even-odd nuclei). β-decay takes one

to the other. Here ap=0 and

Zmin = (4asym + mn − mp − me)A
2(4asym + acA 2

3 )

▶ This gives Zmin ≤ A
2 , ie. N ≥ Z

▶ Given Z nucleus, β-decay if Z + 1 is closer to Zmin.
▶ If Z > Zmin, then nucleus can undergo positron emission, or

electron capture to go to Z − 1.
▶ Those nuclei whose Z (given A) are closest to Zmin will be

stable to β-decay, forming what is called β-stability valley on
plot of M vs Z .
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Liquid-drop model
β-stability valley: |B|/A as function of N and Z
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Liquid-drop model

▶ Similarly determine stability under α-decay,

|B(A,Z )|< |B(A − 4,Z − 2)|+28.3 MeV

▶ Nuclei with A > 165 are unstable to α-decay, but half-lives are
very long.
Consider stable up to 209

83 Bi.
▶ At larger A, either α-decay or fission or both are energetically

favourable. This is why at some point, the periodic table of
elements comes to an end!
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Fermi gas model

Liquid drop model allowed us to derive binding energies, but told
us nothing about dynamics, spin-alignment etc. We expect this to
be quantum mechanical in nature.

Let’s now assume the opposite - let the nucleons be a QM system,
where each nucleon moves independently in the average potential
because of the other nucleons.
We can consider several potentials, let us take the square well type.
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Fermi gas model
These wells are radial. Nucleus is like a box enclosed in a hard wall that
requires finite energy to overcome.
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Fermi gas model

▶ Neutron well has depth V0 (determined from experiment), and
corresponding discrete energy levels.

▶ Each level can have two neutrons with anti-aligned spins.

▶ Level at the last filled level is called the “Fermi energy” E (n)
F

▶ Once levels are filled upto E (n)
F , we need additional Sn energy to

liberate a neutron.
▶ Thus E (n)

F = V0 − Sn
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Fermi gas model

▶ Sn is called the neutron separation energy.
▶ Sn(N,Z ) = |B(N,Z ) − |B(N − 1),Z |
▶ Typical value of Sn is about 8 MeV.
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Fermi gas model

▶ Proton well is similar except for couple of differences
▶ It has a Coulomb barrier at top.
▶ Bottom of the proton well is at a higher level (a smaller number of

bound states for protons is observed)
▶ Both wells are finite (finite number of bound states), and the proton

well is higher by Ec
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Fermi gas model

▶ Thus E (p)
F + EC = V0 − Sp

▶ Sp(N,Z ) = |B(N,Z )|−|B(N,Z − 1)|
▶ Sp is the proton separation energy. We expect Sp to be slightly

smaller than Sn due to Coulomb repulsion
▶ The wells are filled up independently by nucleons (At most two for

each level).
▶ For example for A = 4, we may have four neutrons (two levels filled)

or two protons and two neutrons.
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Fermi gas model

▶ Typically Fermi energies of the two wells are independent.
▶ But for β-stable nuclei, we want to keep them the same. (Why?)
▶ Otherwise one nucleon would decay to other (via β−-decay of

β+-decay)
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Fermi gas model
To do some quantitative stuff, let us at the moment consider both wells
to be identical. Consider the neutron well. Let pmax be the maximum
momentum in the well.

p2
max

2mn
= E (n)

F pmax is called Fermi momentum

The total number of particles is given by

n = 1
(2πh̄)3

∫
d3x d3p

The
∫

d3x is the volume, and∫ pmax

0
d3p =

∫ pmax

0
4π|p|2d |p|= 4

3πp3
max

Thus
n = Vp3

max

6π2h̄3
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Fermi gas model

▶ The maximum momentum is given by p2/2m = EF

▶ The total number of nucleons is 2n.
▶ Thus total number of neutrons N is given by

N = Vp3
N

3π2h̄3

where V is the volume. V = 4
3πR3 = 4

3πR3
0 A, and we get

pN = h̄
R0

(
9πN
4A

)1/3

Similarly

pZ = h̄
R0

(
9πZ
4A

)1/3

Recall R0 ∼ 1.2 fm
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Fermi gas model

▶ Consider nuclei with N = Z = A/2. Then

pN = h̄
R0

(9π
8

)1/3

giving EF ∼ 40 MeV.
▶ The average KE per nucleon is

⟨E ⟩ =
∫ pf

0 E d3p∫ pf
0 d3p = 3

5
p2

F
2m ∼ 24 MeV

▶ Both are much less than ΛQCD = 220 MeV.
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Fermi gas model

▶ The average KE for a nucleus is

⟨E (N,Z )⟩ = N⟨EN⟩ + Z ⟨EZ ⟩ = 3
5

(
N p2

N
2m + Z p2

Z
2m

)

▶ Assuming equal masses for p and n and equal radii for both
wells

⟨E (N,Z )⟩ = 3
10m

h̄2

R2
0

(9π
4

)2/3 N5/3 + Z 5/3

A2/3

▶ For given A, this has minimum for N = Z = A/2.
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Fermi gas model

▶ Let us study behavior around this minimum. Set Z − N = ϵ, with
Z + N = A. Thus

Z = 1
2A(1 + ϵ

A ) N = 1
2A(1 − ϵ

A )

with ϵ/A ≪ 1. Using

(1 + x)n = 1 + nx + n(n − 1)
2 x2 + ...

we get

⟨E (Z ,N)⟩ = 3
10m

h̄2

R2
0

(
9π
8

)2/3(
A + 5

9
(Z − N)2

A + ...

)
▶ We get the volume and symmetry terms
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Fermi gas model

▶ Consider the coefficient of the symmetry term

1
6

(
9π
8

)2/3 h̄2

mR2
0

(Z − N)2

A ≈ 11 MeV × (Z − N)2

A

▶ This is only about half as much as the coefficient we have seen
earlier (asym = 23.2 MeV)

▶ For the rest, assume that well depth V0 has additional term
∝ (Z − N)/A, with coefficient ∼ 30 MeV.

▶ One can also then include effect of Coulomb interactions (proton
well is a bit shallower, changing E (p)

F and so on.
▶ In this model, the notion of excited nuclei also makes sense.
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Shell model

It is observed that nuclei with N, or Z or both with

2, 8, 20, 28, 50, 82, 126

are especially stable.
▶ From considering the Sn or Sp - the separation energies (the gap

between the Fermi energy and the continuum energy).
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Shell model
For example consider Sn for isotopes of 58Ce (Cerium)

(Progress in Physics, vol. 11 (2015), issue 3 (July), arXiv:1504.07726 [nucl-th])
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Shell model

Nuclear Decay Modes

2

8

20

28

50

82

Z

q
2 8 20 28 50

82

126

N

stable long lived, > 5 1015 year, double β−-decay
He4

2 emission (α decay)
electron emission (β− decay)
positron emission (β+ decay) or electron capture

P: proton emission
N: neutron emission

F: spontaneous fission

X: given data less than 50%

❅❘
H11 ✘✘✘✘✘✘✾

H21

✟✟✟✟✟✟✙

He4
2

Neutron Separation Energy

2

8

20

28

50

82

Z

q
2 8 20 28 50

82

126

N

−3 MeV
9 MeV

18 MeV
27 MeV

(QM for Engineers, Prof. Dommelen)
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Shell model

Can also test this idea by considering excited states of nuclei, for example
the doubly magic 208

82 Pb, with Z = 82,N = 126.

Excitation energies for different isotopes of lead with even-even nuclei.
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Shell model

▶ In Fermi gas model, we didn’t do details of the spectrum in the
neutron/proton well.

▶ Consider Schrodinger equation for finite potential well in 3d.
▶ Assume nucleons orbit in some common potential (Hψ = Eψ).

Assume a central potential.
▶ Non-relativistic Schrodinger equation[

∇⃗2 + 2m
h̄2 (E − V (⃗r))

]
ψ(⃗r) = 0

▶ For central potential, [H, J ] = 0.
▶ Energy eigenstates are angular momentum eigenstates,
▶ Energy states can be labelled with angular momentum quantum

numbers.
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Shell model
In hydrogen atom, J⃗ = L⃗ + s⃗, and we use the notation

n LP
J

The spectroscopic notation is

l 0 1 2 3 4 5
S P D F G H

where degeneracies are given by 2(2l + 1).
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Shell model
A finite potential well like Fermi gas model is hard. So let us consider an
infinite well.

ψ(r , θ, ϕ) = un,ℓ(r)Yℓ,m(θ, ϕ)

Here the radial part solves the free Schrodinger equation. For neutrons

−h̄2

2mn

1
r

d2

dr2 (run,ℓ(r)) + h̄
2mn

ℓ(ℓ+ 1)
r2 un,ℓ(r) = Eun,ℓ(r)

The boundary conditons are un,ℓ(r = 0) =finite, and un,ℓ(r = R) = 0
where R is boundary of nucleus.
Solutions for ℓ = 0 are easiest. We find that run,ℓ=0(r) is a linear
combination of cos kr and sin kr . Given the boundary conditions, only
sin kr is allowed, and k = nπ/R

∴ un,ℓ=0(r) = sin kr
kr with En,ℓ=0 = h̄2

2mn

(nπ
R

)2
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Shell model

▶ Generally for ℓ ̸= 0, solutions are spherical Bessel fn jℓ(kr).
▶ Finite at origin, and vanish for special values of argument xn,ℓ.
▶ Allowed values of k are kn,ℓ = xn,ℓ/R. Energy levels are

En,ℓ = h̄2

2mn

(xn,ℓ

R

)2

.
▶ Energy eigenvalue is nth zero of ℓth Bessel function.

The first few ordered values of xn,ℓ are

x1,0 < x1,1 < x1,2 < x2,0 < x1,3 < x2,1 < x1,4 < x2,2 < x1,5 < x3,0 < ...
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Shell model

▶ For each n, ℓ combination, the quantum
number m takes 2ℓ+ 1 values.
Each state is occupied by two particles with spin ↑ and spin ↓

▶ Thus the degeneracy of each state is 2(2ℓ+ 1).
▶ We can count also as total number of states lower than given

energy...

1S 1P 1D 2S 1F 2P 1G 2D 1H 3S
(n, ℓ) (1, 0) (1, 1) (1, 2) (2, 0) (1, 3) (2, 1) (1, 4) (2, 2) (1, 5) (3, 0)

degeneracy 2 6 10 2 14 6 18 10 22 2
total 2 8 18 20 34 40 58 68 90 92
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Shell model

▶ Got magic numbers 2, 8, 20, but did not get 28, 50, 82.

▶ Also got other numbers, which are not magic (18, 34, 40, ...)

▶ We can take one more step (?)

The key point is to introduce spin-orbit coupling. This will split
these levels, and perhaps reproduce the magic numbers.
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Shell model

▶ Introduce to Hamiltonian Us−o(r)L⃗ · s⃗.

▶ Single-particle Hamiltonian, r is distance of nucleon from center, L⃗
is orbital ang. mmtm about center and s⃗ is nucleon’s own spin
operator.

▶ States can no longer be labeled by m (eigenvalue of L⃗z)
or by sz (eigenvalue of s⃗z). [⃗L · s⃗, L⃗z ] ̸= 0 ̸= [⃗L · s⃗, s⃗z ]

▶ However, L⃗2 and s⃗2 do commute with L⃗ · s⃗, and thus we can still use
ℓ and s.

▶ ℓ = 0, 1, 2, 3, ... and s = 1
2

▶ Also J⃗ = L⃗ + s⃗ commutes, [J⃗ , L⃗ · s⃗] = 0, so eigenvalues of J⃗2 and
J⃗z , viz j and jz are good quantum numbers.

▶ States labelled as |ℓ, s, j , jz⟩ with s = 1
2 always.
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Shell model

▶ States are labelled as |ℓ, s, j , jz⟩ where s = 1
2 .

▶ Moreover, j = ℓ± 1
2 (since J⃗ = L⃗ + s⃗).

▶ The degeneracy now comes from different values of jz
▶ For j = ℓ+ 1

2 , it is 2(ℓ+ 1
2) + 1 = 2ℓ+ 2

▶ For j = ℓ− 1
2 , it is 2(ℓ− 1

2) + 1 = 2ℓ
▶ In addition, radial part is labelled by n

States are labelled as

n, ℓj=ℓ+ 1
2
, n, ℓj=ℓ− 1

2

with degeneracy of 2ℓ+ 2, 2ℓ.
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Shell model

The degenerate states will split in energy
by expectation value of L⃗ · s⃗.
Using

L⃗ · s⃗ = 1
2(J⃗2 − L⃗2 − s⃗2)

we write

⟨ℓ, s, j , jz |⃗L · s⃗|ℓ, s, j , jz⟩ = 1
2⟨ℓ, s, j , jz |(J⃗2 − L⃗2 − s⃗2)|ℓ, s, j , jz⟩

= 1
2 (j(j + 1) − ℓ(ℓ+ 1) − s(s + 1))

= 1
2

(
±(ℓ+ 1

2) − 1
2

)
for j = ℓ± 1

2
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Shell model

▶ The amount of splitting of n, ℓℓ+ 1
2

from n, ℓℓ− 1
2

depends on
expectation of Us−o(r).

▶ Us−o is chosen to fit experiment... and is found to be negative
▶ Thus n, ℓℓ+ 1

2
has lower energy than nℓℓ− 1

2

▶ Method:
▶ Calculate ordering of unsplit levels based on zeros of spherical

Bessel functions.
▶ Then calculate magnitude/sign of the splitting due to

spin-orbit coupling
▶ Add this to unperturbed energy and now find reordered levels

▶ Thus for example, earlier (1, 2) was lower than (2, 0). But now we
see (1, 2) 5

2
remains below (2, 0) 1

2
, but (1, 2) 3

2
is above it.
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Shell model

Degeneracies are 2ℓ+ 2 for (n, ℓ)j=ℓ+ 1
2
, and 2ℓ for (n, ℓ)j=ℓ− 1

2
.

(n, ℓ)j (1, 0) 1
2

(1, 1) 3
2

(1, 1) 1
2

(1, 2) 5
2

(2, 0) 1
2

(1, 2) 3
2

(1, 3) 7
2

(2, 1) 3
2

degeneracy 2 4 2 6 2 4 8 4

total 2 6 8 14 16 20 28 32

(n, ℓ)j (1, 3) 5
2

(2, 1) 1
2

(1, 4) 9
2

(2, 2) 5
2

(1, 4) 7
2

(1, 5) 11
2

(3, 0) 1
2

(2, 2) 3
2

degeneracy 6 2 10 6 8 12 2 4

total 38 40 50 56 64 76 78 82

Now we have all magic numbers (we will get 126 too if we keep going).
Other shells too, but at magic numbers, energy gap to next shell is large.
This is simply from infinite square well.. we can consider other
potentials..
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Shell model

r

0 1 2 3 4 5 6 7 8 9 10

V
(r

)

-10

-8

-6

-4

-2

0

2 Harmonic Oscillator

r

0 1 2 3 4 5 6 7 8 9 10

V
(r

)

-10

-8

-6

-4

-2

0

Saxon-Woods

r

0 1 2 3 4 5 6 7 8 9 10

V
(r

)

-10

-8

-6

-4

-2

0

Infinite Well

V (r) = 1
2mω2r2, V (r) = −V0

1+exp( r−R
a )

Nuclear physicists use the Saxon-Woods potential. Then the Schrodinger
equation has to be solved numerically.
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