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Nuclear Physics

» Nuclei arise when protons and neutrons bind to each other
due to strong force.

» A nuclear species is characterized by total positive charge and
the total number of mass units. The nuclear charge = +Ze,
where Z is the atomic number. That is, the nucleus has Z
protons.

» The mass number A of a nuclear species is the total number
of nucleons. A = Z protons +(A — Z) neutrons. Sometimes
N used for number of neutrons.

A specific nuclear species, or nuclide, is written as E\XN-
For example, 3%8U146 or %HO, or ggFe30.

But sometimes just /X, so 23U , where U tells us that Z = 92,
and thus A — Z = N = 146.
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Terms

» Isotopes: Nuclides with same proton number, but different
neutron numbers.
For example, 35C1 and 37C1
» Isotones: Nuclides with same neutron number, but different
proton numbers.
For example, 2H and 3He
» Isobars: Nuclides with same mass number A
For example, 3He and 3H
More than 5000 nuclides have been characterized, with about 251
stable nuclides.
Heaviest stable nucleus is 210Pb
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Properties

The properties of nuclides that we would be interested in would be

Mass, Radius, Relative abundance (for stable nuclides), Decay
modes and half life (for unstable nuclides), Reaction modes and
cross sections, spin, magnetic moment, etc.

We are also interested in what makes a particular nuclide stable,
and what are the patterns of stable nuclei.

Nuclear masses are measured in terms of unified atomic mass unit
u. It is defined such that the mass of an atom of 12C = 12u.
The nucleons are thus typically of mass 1u = 931.502 MeV.

Mass of proton m, = 938.27 MeV = 1.00727 u
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Size
We need an operational definition of size. We can characterize
nuclear shape with two parameters.
» mean radius: where density is half of central value
» skin thickness: density drops from near max to its min.
These depend on the experiment.

So we shall consider two things:

distribution of nuclear charge (which is probed using EM
interaction), and

distribution of nuclear matter (probed using strong interaction)
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Nuclear charge distribution

» We can scatter electrons elastically from a nuclear target -
this acts like diffraction from a circular disk of diameter D,
with first minimum at 6 = sin=1(1.22\/D). This roughly
gives 120 as 2.6 fm, and 12C as 2.3 fm.

> We can do something qualitative: let the initial electron
wavefn be e*i" and final electron be e**". where p = hk.

» The interaction potential V/(r) says that probability of
transition from initial i to final f is proportional to

Fllke) = [ wiV(ryav

» Rewrite with g = kr — k;, and using V/(r) as EM interaction
(nuclear charge density Zepe(r')) gives us

F(q) = / & po(r)d/
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Nuclear charge distribution

Here F(q) is known as the form factor for the nucleus.
For radial pe(r’), we get

F(q) = %r/sin qr’ pe(r')r'dr’

We measure scattering prob.
between p; and pr as function of
scattering angle, and for various

. Flgure 3.3 The geometry of scattering experiments. The origin of coordinates is
nucilel. located arbitrarily. The vector r’ locates an element of charge dQ@ within the
nucleus, and the vector r defines the position of the electron.

We see that number of nucleons per unit volume is roughly
constant. This gives us a relatively simple empirical formula for size

R(A) ~ 1.2A5 fermi

The skin thickness is typically 2.3 fm.
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Nuclear matter distribution

> Scatter an a-particle (*He) from say 1°”Au. Low energies —
Coulomb force, (Rutherford scattering). At higher energies,
Coulomb repulsion is overcome and nuclear forces act.

» Radioactive decay (a-particle emission). The a must escape
nuclear potential and penetrate a Coulomb barrier. a-decay
probabilities calculated from standard barrier-penetration
approach depend on nuclear matter radius R.

» m-mesic X rays: Fire pions at the nucleus. The © meson
wavefn overlaps with nucleus, and shifts energy levels from
values calculated using Coulomb interaction. Pions can also
be absorbed into the nucleus, and one can study
“disappearance rate”

Turns out that charge and matter radii are nearly equal to within
0.1 fm. Inside the nucleus, neutrons and protons are mixed well.
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Binding energy

» Given A and Z, can we derive the mass of a nuclide?

» Experimentally, we find mass of nucleus < sum of its
constituents. Thus B.E is negative.

> B(A,Z)=M(A,Z)—Zm, — (A—Z)m,
» Then average binding energy per nucleon is |B|/A
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Some observations

| 2

>

| 4

|B|/A is about 1 MeVfor 2H, but rises and is later constant
around 8 MeV

Peaks at about 9 MeVfor 32Fe, °2Ni (very abundant in
planetary cores)

|B|/A curve drops at small A: for small nuclei, greater
number of nucleons at surface, and are not surrounded by
other nucleons.

|B|/A drops at large A: Coulomb effect depens on no. of

proton pairs (Z? increases faster than A and Coulomb
repulsion makes these nuclei less tightly bound.)
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Isotope vs Half-life

N(t) = Noe /7

where N is the number of initial objects, and N(t) is the number
surviving after time t, and 7 is the mean lifetime.

The half-life is the time t; , such that N(t;/2) = 3No.

2
This gives us t;, = 7In2.

Deuteron 2H is stable, but Tritium nucleus 3H has a half-life of
12.32 years with the decay mode being

H — 3He + e + 7 (1)

Why 12.32 years? Neutron lifetime is minutes...
Here AM =18.6 keV (but m, — mp =1.29 MeV)

11/67



Isotope vs Half-life
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Measuring mass

Measuring mass of a nuclide is tied into measuring its binding
energy. A Mass spectrometer is an important technique.

Photographic
plate

lon source: produce ionized
atoms/molecules.
Velocity selector: crossed E and B

fields.
Momentum selector: just a B field.

E has force upward, and B has force downward. Setting the two fields
such that the forces are balanced gives gE = qvB, and thus ions of
velocity v = E/B pass undeflected.

In the momentum selector, mv = gBr. This gives

_ qrB?

m
E
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Mass doublet method

Measuring all terms in m = qrB?/E to high precision is difficult for
different ions. Suppose we want to measure 'H in terms of u, and then
measure *N. Resetting apparatus can be hard. Or finding the right ions.

» Fix apparatus for mass 128, and measure difference between CyHyg
(nonane) and CigHg (napthalene). We get
A = 0.09390032 + 0.00000012 u

» Ignoring molecular binding energy (~ 10~%u), we can write
A = m(CoHap) — m(CioHg) = 12m(*H) — m(*?C)
Thus
m(*H) = = [m(*2C) + A] = 1.000000 + A

12
= 1.00782503 £ 0.00000001 i
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Mass doublet method

» Now set apparatus for mass 28, and measure difference between
CoHy and Ny. Obtain an expression for m(N,) in terms of known
masses (1H etc.).

(A =m(GHa) — m(N>) )

A= m(C2H4) — m(Nz)
=2m(*C) + 4m(*H) — 2m(*N)
= 0.025152196 + 0.000000030u
m(**N) = m(*2C) + 2m(*H) - 1A
— 14.00307396 + 0.00000002u

Mass spectrometer also allows us to measure relative abundances by
measuring the ion current for different masses.
One can also use it to collect a large quantity of a particular isotope by

setting for a single mass.
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Nuclear spins

» Nuclei are also classified according to whether the Z and N are even
or odd.

» Nuclei are classified as even-even (both Z, N even) or odd-odd
(both Z, N odd), or even-odd, odd-even.

» In even-even or odd-odd cases, A is even and thus spin of the
nucleus is integer.

» |n odd-even or even-odd, A is odd, and nucleus has half-integer spin.

For example, 3He is a boson, while 3He is a fermion.

4He exhibits Bose-Einstein condensation and thus superfluidity when
cooled to low temperature (~ 2.2K). 3He has to be cooled further
(~ 2.5mK), where first bosonic Cooper pairs are formed before
condensing.
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Nuclear spins

» In principle, a nucleus with 100 or 200 nucleons can have a spin as
high as 1005.

In fact, all even-even nuclei have spin 0. Thus half spins are paired
with other half!

» The range of spins can be deduced by measuring magnetic dipole
moments (u).

» We have for a current loop due to a single particle of charge e and
. . ﬁ
mass m with radius r, u = 5--L. QM says u = 5.

» For fundamental particles, in analogy we write u = g%s = Sup.

Here g is a dimensionless number called g-factor, and ug is the
Bohr magneton.

» The classical Dirac equation allows us to predict g = 2 which agrees
very well with experimental value. Additional quantum corrections
to the Dirac equation using QED allow us to reproduce the
experimentally measured value g = 2.002319.
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Nuclear spins

» For nuclei we define the nuclear magneton uy = % and we get
tp = 2.7928456uy and p, = —1.9130419uy for the proton and

neutron.

» The g-factors for them are g, = 5.5856912 + 0.0000022 and
gn = —3.8260837 £ 0.0000018. These are considerably different
from 2! This can’t be just quantum corrections.. in some sense this
is evidence that the proton/neutron are composite particles.

» Nuclear magnetic moments are much smaller than electron.. thus at
atomic physics scale one is dominated by electron. Only completely
ionized atoms allow us to see the nuclear magnetic moment.

» Experimentally, nuclear magnetic moments range from —3uy to
+10pupy. This is very different from naively expecting 200y, and
thus large cancellations must be taking place.

» Note that all even-even nuclei are spinless and thus have no
magnetic moment.
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Nuclear stability

> For Z < 40, we see that N ~ Z. For 38Fe, N = 1.15Z. For Z > 40,
the number of neutrons rises. For 32Rn, N = 1.58Z.

» As number of protons increases, protons repel each other.. so we
need a proportionately larger number of neutrons to “dilute” the
protons.

» There are 156 stable even-even nuclei, only 5 stable odd-odd, and
about 50 each of odd-even, and even-odd. This suggests there is
some pairing mechanism at work.

Recall that we saw strong force is same whether its pp or pn or nn. We
also saw there are no nn bound states (motivated this using isospin). We

saw that only singlet state existed (|0,0) = (%) (pn — np))
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Nuclear Stability

» Consider deuteron (pn). Its spin S can be 7 1,0.

» \We observe is that deuteron has s =1 and ¢ =0 (or 2).
There is no spinless deuteron.

» Binding tighter for aligned spins (17, ||) rather than
anti-aligned (1]).

» Thus pair of neutrons must also need aligned spins to make
bound state.

» This violates Pauli's exclusion principle (wave-function
antisymmetric under exchange for two-fermion system).

» Similarly no pp nuclei.

» Even-even are remarkably stable, consider 3He. Here the two

neutrons are 1/, two protons are 1] and these combine.
‘Pairing’ accounts for spinless nature of all even-even nuclei.
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Nuclear Instability

» Unstable nuclei emit particles and aim to get stable: Radioactivity
> Typical well known types of radiation: «, 3,7.
» a-decay is a form of nuclear fission
7X = 573X’ + 5He
%°U = 5*Th + 3He
» Typical KE of « particles is 5 MeV.

» a-decay is a tunnelling of a part of the nucleus out of the potential
barrier of the rest of the nucleus. It is a strong interaction.
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Nuclear Instability

» Already seen /3 decay (n — p+ e~ + 7).
» Nuclear process is
AX S ALX be 47 MC BN
» Positron 3 decay
X = 7X e v BMg—iiNa
» “Electron-capture” (a nuclear reaction appearing as decay)
X 4e =45 X +ve
géKr +e — géBr + Ve

» Typical energy release is of order 1 MeV.

All possibilities depend on the relative B.E. : need at least

0.511 MeV + m,. Often [-decay will follow from daughter of a-decay.

22/67



Nuclear Instability

» ~-radiation is emission of photon from excited nucleus.

v

EM process, energy range from 100 keV to 10 MeV.

» can happen soon after an a- or S-decay.
» We also have induced nuclear fission (« is spontaneous)
332U + n — PKr + :¢*Ba+ 3n

» This releases ~ 177 MeV (large energy), and can trigger a
chain reaction. (The 3n carry kinetic energy and further
induce fission in a sufficiently dense sample.
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Mass models

» Nuclear mass models are typically empirical or semi-emipirical.

» We shall examine three of them: Liquid drop model, Fermi gas
model, and Shell model

» Note that mass defect
AM(A, Z)=M(A Z)—Zm, — (A—Z)m,

Binding energy per nucleon
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Liquid

drop model

Observations:

> We see |B|/A is nearly constant in range 12 < A < 240 and that

| 2

. 1
size R ~ A3

The constancy of |B|/A is a hint: if nuclear force due to A particles
interacting pairwise, then total energy of collection of A objects
would scale as ~ A? at large A.

Thus |B|/A would grow linearly with A (energy would scale as A2).

But nuclear force is short-range: objects interact with only some
nearest neighbors - the force is “saturated”

» Let us treat the nucleus as incompressible liquid droplet of R ~ A3,

» |B|/A peaks around 60. For A < 60, its favorable to assemble two

nuclei into larger one (fusion). For A > 60, its favorable for nucleus
to split (fission).
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Liquid drop model

Broadly we have

» More number of nucleons, more binding energy.

» More surface, less binding energy.
(less nearest neighbours)

» Higher Z, less binding energy.
(repulsion between protons)

» If N # Z, less binding energy.

» Then we have even-even, odd-odd, and others.
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Liquid drop model

Broadly we have
» More number of nucleons, more binding energy. Volume term.

» More surface, less binding energy. Surface term.
(less nearest neighbours)

» Higher Z, less binding energy. Coulomb term.
(repulsion between protons)

» If N # Z, less binding energy. Symmetry term.

» Then we have even-even, odd-odd, and others.
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Liquid drop model

» First term is just one for the saturated force. B = —a, A

» Now we account for decrease of |B|/A for small A. Let us say that
there is an outer layer which is less tightly bound - this term will be
important at small A since surface to volume ratio will be large.
This term scales as R2, thus A3

B=—a,A+aAs

This term reduces the B.

> Now the slow decrease of |B|/A at large A due to Coulomb
repulsion. This scales as Z(Z — 1)/R, so
Z(Z-1
B=-aA+ asA% + aCQ
A3
This is the form of the energy for a liquid drop. To go further we need to
incorporate other effects.
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Liquid drop model

» We know that for small A we have A =27, and at large A, we have
A~ 25Z. We want to put in a term that reduces B when A # 2Z.

» So we have symmetry term

1 A—227)?
) o, A2

Z(Z
B:—aVA—i—asA%—l—ac (

1
3

Now we need to add one last term to prefer even-even (more stable) and
penalize odd-odd (less stable)
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Liquid drop model

Bethe-von Weizsacker semi-empirical binding energy formula

2 Z(Z -1 A—27)? a
B=—-a/A+ a;As + ac (A% )+asym( A ) +Az

where experimentally we have

a, = 15.8 MeV, as = 18.3 MeV, ac = 0.714 MeV
asym = 23.2 MeV, ap==x120or 0 MeV

where for a,, the + is for odd-odd (less stable) and — for even-even (less
stable) and O for others.
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Liquid-drop model
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Liquid-drop model

[-stability valley: Given A, how does B vary as function of Z7?

% -8.34—
- -8.36]—
aoln 1 B7-decay to 5Sn 838
seBa : OT-decay to 5;Cs sl
soTe : stable. a2l

53l 1 Electron capture to excited 5,Te.

f
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Liquid-drop model

[-stability valley: Given A, how does B vary as function of Z7?
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Liquid-drop model

[-stability valley: Given A, how does B vary as function of Z7?

ggFe: very stableI
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Liquid-drop model

» [(-stability valley: Given A, how does B vary as function of Z7
» Add mass of constitutents My = (A — Z)m, + Z(mp + me).
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Liquid-drop model

» [(-stability valley: Given A, how does B vary as function of Z7
» Add mass of constitutents My = (A — Z)m, + Z(mp + me).

» Then mass of bound state (for given A) is
M = Mconstituents — B
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Liquid-drop model

» [(-stability valley: Given A, how does B vary as function of Z7

» Add mass of constitutents My = (A — Z)m, + Z(mp + me).

» Then mass of bound state (for given A) is

M = [Amy — Z(mp — mp — me)]

Z(Z-1) A2 —4AZ + 477

—a/A+ a5A§ + dc——1 + asym
A3
—a—fZ+~2°

where «, 8, are coefficients.

A

R
1
2
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Liquid-drop model

>
>
>

Parabola with minimum at %—’\Z/’ =0, i.e. Zmin=L/27.
Thus Zpn is integer closest to 3/27.

Say A is odd (odd-even/even-odd nuclei). -decay takes one
to the other. Here a,=0 and

z (4asym + mp — mp — me)A
2
2(4asym + acA3)

A
» This gives Znin < 5 ie. N>Z7

» Given Z nucleus, 5-decay if Z + 1 is closer to Znin.

If Z > Znin, then nucleus can undergo positron emission, or
electron capture to go to Z — 1.
Those nuclei whose Z (given A) are closest to Zpin will be

stable to (B-decay, forming what is called S-stability valley on
plot of M vs Z.
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Liquid-drop model

[-stability valley: |B|/A as function of N and Z

T

20
10
20 5 50

30 60
35 4 70
z I\

37/67



Liquid-drop model

» Similarly determine stability under a-decay,
|B(A, Z)|< |B(A—4,Z —2)|+28.3 MeV

» Nuclei with A > 165 are unstable to a-decay, but half-lives are
very long.
Consider stable up to 33°Bi.

> At larger A, either a-decay or fission or both are energetically
favourable. This is why at some point, the periodic table of
elements comes to an end!
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Fermi gas model

Liquid drop model allowed us to derive binding energies, but told
us nothing about dynamics, spin-alignment etc. We expect this to
be quantum mechanical in nature.

Let's now assume the opposite - let the nucleons be a QM system,
where each nucleon moves independently in the average potential
because of the other nucleons.

We can consider several potentials, let us take the square well type.
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Fermi gas model

These wells are radial. Nucleus is like a box enclosed in a hard wall that
requires finite energy to overcome.

Coulomb

/ %rier
(o] o

B EYe ) e W IR I N Y R Fermi level
clee | e,

Neutrons Protons
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Fermi gas model

Coulomb

/ wrier

o _ o
Sy N PN

g 40—(1); + Fermilevel
‘ O AYA?
b4
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hdi 4

Eg®

Neutrons Protons

> Neutron well has depth V4 (determined from experiment), and
corresponding discrete energy levels.

» Each level can have two neutrons with anti-aligned spins.

» Level at the last filled level is called the “Fermi energy” E,(:")

()

» Once levels are filled upto E-", we need additional S, energy to

liberate a neutron.
> Thus £ = Vo — S,
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Fermi gas model

Coulomb

/ Karrier
o

o -
> 3 oo
] . Fermi level
‘ 3 A
. L 4

el 0o e
e A

» S, is called the neutron separation energy.
» Typical value of S, is about 8 MeV.
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Fermi gas model

Coulomb

/ wrier
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Neutrons Protons

» Proton well is similar except for couple of differences
» |t has a Coulomb barrier at top.

> Bottom of the proton well is at a higher level (a smaller number of
bound states for protons is observed)

> Both wells are finite (finite number of bound states), and the proton
well is higher by E.
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Fermi gas model

Coulomb
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> Thus EX) + Ec = Vo — S,
> S5p(N,Z) = |B(N, Z)|—|B(N, Z —1)|

» S, is the proton separation energy. We expect S, to be slightly
smaller than S, due to Coulomb repulsion

» The wells are filled up independently by nucleons (At most two for
each level).

» For example for A = 4, we may have four neutrons (two levels filled)
or two protons and two neutrons.
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Fermi gas model

Coulomb

/ %rier
o

b —d}—q)— rrrrrrrrrrrrrr —H— rrrrrrrrr Fermi level
o] Fee =
Ef

Neutrons Protons

» Typically Fermi energies of the two wells are independent.
> But for S-stable nuclei, we want to keep them the same. (Why?)

» Otherwise one nucleon would decay to other (via 5~ -decay of
BT -decay)
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Fermi gas model

To do some quantitative stuff, let us at the moment consider both wells
to be identical. Consider the neutron well. Let ppax be the maximum
momentum in the well.

2

p . .

2""3X = I(E") Pmax is called Fermi momentum
mp

The total number of particles is given by

1 3 3
:@mp/dXdp

The [ d3x is the volume, and

Pmax 3 Pmax 2 4 3
/ d°p =/ 4x|p|*d|p|= 2T Ppax
0 0 3

Thus s
— meax
6m2h°
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Fermi gas model

» The maximum momentum is given by p?/2m = Ef
» The total number of nucleons is 2n.
» Thus total number of neutrons N is given by

_ Y
3725

where V is the volume. V = 47R3 = 47R3A, and we get

_ B (9rN\Y?
PN =R A

_h (9nz\'?
Pz =R\ aa

Similarly

Recall Ry ~ 1.2 fm
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Fermi gas model

» Consider nuclei with N = Z = A/2. Then
ho/9r\1/3
=5, (5)
giving Ep ~ 40 MeV.

» The average KE per nucleon is

)& E d°p _ 3 pf
Ey=20 9P _2PF o4\
(E) & d3p ~ 52m v

» Both are much less than Agcp = 220 MeV.
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Fermi gas model

» The average KE for a nucleus is

(E(N,Z)) = N{En) + Z{Ez) = % <N§N + Z;é)

» Assuming equal masses for p and n and equal radii for both
wells

3 B (9m\?¥/3 NS/3 4 Z5/3
EW.2) = - (7))

10m R?2 A2/3

» For given A, this has minimum for N = Z = A/2.
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Fermi gas model

» Let us study behavior around this minimum. Set Z — N = ¢, with

Z+ N=A. Thus
€

1 € 1
Z=-A(l+ — N==-A(1—-
A0S N=2A0- )

A
with €/A < 1. Using

-1
(1+x)”zl+nx+%x2+...

Ey = T () (s BN

)>:10mRT§ 8 9 A

> We get the volume and symmetry terms
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Fermi gas model

» Consider the coefficient of the symmetry term

(Z- Ny
2T o1 Mev < 2
mR2 A VXT3

6

1 (%)2/3 R (Z - N)?
8

» This is only about half as much as the coefficient we have seen
earlier (asym = 23.2 MeV)

» For the rest, assume that well depth V4 has additional term
x (Z — N)/A, with coefficient ~ 30 MeV.

» One can also then include effect of Coulomb interactions (proton

well is a bit shallower, changing Eﬁp) and so on.

» |n this model, the notion of excited nuclei also makes sense.
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Shell model

It is observed that nuclei with N, or Z or both with
2,8,20,28,50,82,126

are especially stable.

» From considering the S, or S, - the separation energies (the gap
between the Fermi energy and the continuum energy).
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Shell model

For example consider S, for isotopes of z5Ce (Cerium)

25

N\ : Two-Neutron Separation Energies VS Neutron Number
: For Cerium Isotopes (Z=58)
204
I
154
S
Q
=3 ey
Z
o 10
5 RN
-0
)

— T - |
64 68 72 76 80 B84 88 92 96 100 104 108 112 116 120 124
N

FIG. 6: Two-neutron separation energies (Szy) along the cerium isotopic chain. This quantity is defined as

San(A,Z, N) = Bind(A. Z,N) — Bind(A — 2, Z, N — 2) where the binding energy Bind(A, Z, N) is given by Eq. (1).

Note that in our approache the neutron drip line (where S;y = () can be extrapolated around N = 128 for Cerium
isotopes.

(Progress in Physics, vol. 11 (2015), issue 3 (July), arXiv:1504.07726 [nucl-th])
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Shell model

Nuclear Decay Modes Neutron Separation Energy

N N
126 126
2

= Stable w long Tved, > 5 107 yoar, donble -
iHe enission (o decay)
on emission (5 decay)

positron emission (4 decay) or clectron capture

“decay

THN{P: proton emission

F: spontancous fission
N: neutron emission P

i data less than 50%

20 25 50

(QM for Engineers, Prof. Dommelen)
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https://web1.eng.famu.fsu.edu/~dommelen/quantum/style_a/index.html

Shell model

Can also test this idea by considering excited states of nuclei, for example
the doubly magic 338Pb, with Z = 82, N = 126.

2.61
r K

EMeV) % 000 oug P

i I + ¥

A= 202 204 206 208 210 212

Excitation energies for different isotopes of lead with even-even nuclei.
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Shell model

» In Fermi gas model, we didn't do details of the spectrum in the
neutron/proton well.

» Consider Schrodinger equation for finite potential well in 3d.

> Assume nucleons orbit in some common potential (Hy) = Ev)).
Assume a central potential.

» Non-relativistic Schrodinger equation

- 2m
V2+?(

E—-V(7)|¢(r)=0
» For central potential, [H, J] = 0.

> Energy eigenstates are angular momentum eigenstates,

» Energy states can be labelled with angular momentum quantum
numbers.
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Shell model
In hydrogen atom, J =L +53, and we use the notation

nL_’,J

The spectroscopic notation is

/[0 1 2 3 4 5
S P D F G H

where degeneracies are given by 2(2/ + 1).
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Shell model

A finite potential well like Fermi gas model is hard. So let us consider an
infinite well.

7/’("7 97 QS) = un,f(r) Yf,m(aa ¢)

Here the radial part solves the free Schrodinger equation. For neutrons

~K1d? hoL(C+1)
T —

une(r) = Eup(r)

The boundary conditons are up, ¢(r = 0) =finite, and up(r = R) =0
where R is boundary of nucleus.

Solutions for £ = 0 are easiest. We find that rup, ¢—o(r) is a linear
combination of cos kr and sin kr. Given the boundary conditions, only
sin kr is allowed, and k = nw/R

R

sinkr . B/ nm\2
Un7g:o(r) = pe with En,g:() = m ( )
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Shell model

» Generally for £ # 0, solutions are spherical Bessel fn jy(kr).
» Finite at origin, and vanish for special values of argument x, .
> Allowed values of k are k, s = x,¢/R. Energy levels are

le Xn o 2
En =~ om, ( R )
o4 2m, \ R

h

» Energy eigenvalue is n' zero of ¢t Bessel function.

The first few ordered values of x, , are

X1,0 < X1,1 < X12 < X0 < X13< X1 <X14<X2<X15<X30<...
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Shell model

» For each n, ¢ combination, the quantum
number m takes 2/ 4 1 values.

Each state is occupied by two particles with spin 1 and spin |
» Thus the degeneracy of each state is 2(2¢ + 1).

» We can count also as total number of states lower than given

energy...
1S 1P 1D 2S 1F 2P 1G 2D 1H 3S
(n, €) (o (1) (1,2 (209 (13 1) LY (22 (L5 3,0
degeneracy 2 6 10 2 14 6 18 10 22 2
total 2 8 18 20 34 40 58 68 90 92
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Shell model

» Got magic numbers 2,8, 20, but did not get 28, 50, 82.
» Also got other numbers, which are not magic (18, 34,40, ...)

» We can take one more step (?)

The key point is to introduce spin-orbit coupling. This will split
these levels, and perhaps reproduce the magic numbers.
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Shell model

> Introduce to Hamiltonian U,_,(r)L - 3.

—

» Single-particle Hamiltonian, r is distance of nucleon from center, L
is orbital ang. mmtm about center and S is nucleon’s own spin
operator.

> States can no longer be labeled by m (eigenvalue of L,)
or by s, (eigenvalue of ;). [L-5,L,] #0#[L-5,5,]

» However, L2 and 52 do commute with L -5, and thus we can still use
{ and s.

» (=0,1,2,3,...and s =1

> Also J = L+ 5 commutes, [J,L-5] =0, so eigenvalues of J2 and
J;, viz j and j, are good quantum numbers.

> States labelled as |¢, s, , j,) with s = 1 always.
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Shell model

States are labelled as |¢,s, j, j,) where s = 1.

Moreover, j = £+ 1 (since J = [ +5).

Forj=(¢+13,itis2({+1)+1=20+2
Forj=¢—1,itis2({—1)+1=2¢

>

>

» The degeneracy now comes from different values of j,
>

> L

» In addition, radial part is labelled by n

States are labelled as
n,fj:e+%, n, fj:g_%

with degeneracy of 2/ + 2, 2/.
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Shell model

The degenerate states will split in energy
by expectation value of L -s.
Using

[5=(P-1*-#)

we write
. T o .o 1 . a7 e i, ..
<€7S7JVJZ‘L : 5|€157./7./z> = 7<£ S,Js ./z|(J2 - L2 - 52)|€75;./a./z>
Z*(J(J+ 1) =4l +1) = s(s+1))

:E(i(g—i—i)_?) forj:éi%
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Shell model

» The amount of splitting of n, 4,1 from n,¢,_, depends on
expectation of Us_o(r).

» Us_, is chosen to fit experiment... and is found to be negative
» Thus n,fy1 ;1 has lower energy than nf,_,
» Method:

» Calculate ordering of unsplit levels based on zeros of spherical
Bessel functions.

» Then calculate magnitude/sign of the splitting due to
spin-orbit coupling

» Add this to unperturbed energy and now find reordered levels

» Thus for example, earlier (1,2) was lower than (2,0). But now we
see (1,2)5 remains below (2,0)s, but (1,2) is above it.

5 1
2 2
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Shell model

Degeneracies are 2¢ + 2 for (n,é)j:@r%, and 2/ for (n,é)j:é_%.

(n, 0); (1,01 (1,13 (L1 (125 (201 (1,2)3 (L,3)z (2,13
2 2 2 2 2 2 2 2
degeneracy 2 4 2 6 2 4 8 4
total 2 6 8 14 16 20 28 32
(n, £); 1L,3)s @211 L4y (225 LYz LY G0 (223
2 2 2 2 2 2 2 2
degeneracy 6 2 10 6 8 12 2 4
total 38 40 50 56 64 76 78 82

Now we have all magic numbers (we will get 126 too if we keep going).
Other shells too, but at magic numbers, energy gap to next shell is large.

This is simply from infinite square well.. we can consider other
potentials..
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Shell model

5 =N S
I’ Harmonic Oscillator Saxon-Woods
Infinite Well
o
P
o
o
) P T A R T B T P O A P P AR O bbbyl
0 12 8 4 5 6 7 8 9 1 0 1 2 8 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 1
1 -V
V(r) = Zmw?r?, V(r)= —%
2 Ltexp(5

Nuclear physicists use the Saxon-Woods potential. Then the Schrodinger
equation has to be solved numerically.
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