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Nucleon Isospin

▶ Heisenberg noticed the similarities in masses between neutron
and proton. (mp = 938.28 MeV/c2, mn = 939.57 MeV/c2).

▶ “Their charge is different, but aside from this they are
identical”

▶ Charge independence of hadronic force.
▶ What gives rise to this symmetry?
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Nucleon Isospin
We begin by noticing that when s =½, then
|½,½⟩ and |½,-½⟩ are two states of the same particle.

Let there be a particle called nucleon with a property called
Isospin, I. It has 3 components, I1, I2, I3.

In analogy to spin, nucleon has I = 1
2 , and we have two possible

states

|1
2 ,

1
2⟩ = proton ; |1

2 , −1
2⟩ = neutron(

1
0

)
= proton ;

(
0
1

)
= neutron

Note that components are not in regular space, but in abstract
‘isospin’ space.
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Nucleon Isospin

The generators of isospin are Ii = 1
2τi

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)

Recall the Pauli spin matrices, with Ŝ =
(

h̄
2

)
σ

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
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Nucleon Isospin
Charge independence of nuclear force ⇄ Strong interactions are
invariant under rotations in isospin space.

Isospin is conserved in all strong interactions.

Thus if H = Hem + Hhad , then we have [Hhad , I] = 0.
But [Hhad + Hem, I] ̸= 0.

However we know [Hhad + Hem, Q] = 0.
We could define charge for |I, I3⟩ as q = e(I3 + 1

2).

This gives qp = 1 (I3 =½), and qn = 0 (I3 = −½).

We have [Hhad + Hem, I3] = 0.
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Pion Isospin
We have [Hhad , I] = 0. All particles with same I have same
hadronic properties. Different members of an isospin multiplet are
in essence same particle with different orientations in isospin space.

Consider the pion-exchange theory of Yukawa to explain strong forces
N → N ′ + π.

Isospin is conserved, and nucleon isospin I =½. What possible values can
pion isospin have?

1
2 → 1

2 ⊕ Iπ

It can be 0 or 1 .
If I = 0, there would be one pion. But there are three pions (π±, π0).
Thus for pions we assign I = 1.

π+ = |1, 1⟩, π0 = |1, 0⟩, π− = |1, −1⟩
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∆ Isospin

For ∆’s, I = 3
2

∆++ = |3
2 ,

3
2⟩, ∆+ = |3

2 ,
1
2⟩

∆0 = |3
2 , −1

2⟩, ∆− = |3
2 , −3

2⟩

Essentially, to assign I, take number of particles in a multiplet. They
have I3 from −I to I, and so number= 2I + 1.
For hadrons composed of only the u, d , s quarks, we have the
Gell-Mann–Nishijima formula Q = I3+½(B + S). B is baryon number,
and S is strangeness.
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Isospin

Q = I3 + 1
2(B + S), what is Σ and Ξ isospins?

Σ+ uus Σ0 uds
Σ− dds
Ξ0 uss Ξ− dss

In context of quark model, it can follow from u, d being a isospin doublet
(I =½), and s having isospin zero. (All other flavors also get isospin zero,
as do leptons and mediators).
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Implications of Isospin
Consider adding the isospins of p and n, i.e. a state with two nucleons
(each with I =½), will result in

|1, 1⟩ = pp

|1, 0⟩ =
(

1√
2

)
(pn + np)

|1, −1⟩ = nn

|0, 0⟩ =
(

1√
2

)
(pn − np)

where by pp we mean the state |½,½⟩|½,½⟩ and so on

Experimentally we only see one bound state of p and n (and no pp or nn
bound states). Thus deuteron must be isosinglet (strong attraction in
I = 0 channel, not in I = 1 channel). The deuteron isospin is thus 0.
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Nucleon nucleon scattering
Consider the following processes

(a) p + p → d + π+

(b) p + n → d + π0

(c) n + n → d + π−

Deuteron has I = 0.
On RHS isospin states are defined
by pion isospin:
|1, 1⟩, |1, 0⟩, |1, −1⟩.

On LHS (see prev slide), the pp and nn states are |1, 1⟩, and |1, −1⟩.
The pn state is

√
1
2(|1, 0⟩ + |0, 0⟩).

Since isospin is conserved, only the I = 1 state will contribute. Thus the
scattering amplitudes are in the ratio Ma : Mb : Mc = 1 :

√
1
2 : 1.

The cross section, σ, goes like |M|2, and thus are in the ratio
σa : σb : σc = 2 : 1 : 2.

Cross section σ is the rate at which a process occurs, and is measured in
units of area (more on this later).
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Pion-nucleon scattering

Pion-nucleon scattering processes (πN → πN).

Elastic processes
(a) π+ + p → π+ + p
(c) π− + p → π− + p
(e) π0 + n → π0 + n

Charge-exchange processes
(g) π+ + n → π0 + p
(i) π0 + n → π− + p

(b) π0 + p → π0 + p
(d) π+ + n → π+ + n
(f) π− + n → π− + n

(h) π0 + p → π+ + n
(j) π− + p → π0 + n

The pion has I = 1, and the nucleon has I =½
thus the total isospin can be 3/2 or 1/2.
There are only two distinct scattering amplitudes here
(strong processes invariant under rotations in isospin space),
lets call these as M3 for I = 3

2 and M1 for I =½.
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Pion-nucleon scattering

π+ + p : |1, 1⟩|1
2 ,

1
2⟩ = |3

2 ,
3
2⟩

π0 + p : |1, 0⟩|1
2 ,

1
2⟩ =

√
2
3 |3

2 ,
1
2⟩ −

√
1
3 |1

2 ,
1
2⟩

π− + p : |1, −1⟩|1
2 ,

1
2⟩ =

√
1
3 |3

2 , −1
2⟩ −

√
2
3 |1

2 , −1
2⟩

π+ + n : |1, 1⟩|1
2 , −1

2⟩ =
√

1
3 |3

2 ,
1
2⟩ +

√
2
3 |1

2 ,
1
2⟩

π0 + n : |1, 0⟩|1
2 , −1

2⟩ =
√

2
3 |3

2 , −1
2⟩ +

√
1
3 |1

2 , −1
2⟩

π− + n : |1, −1⟩|1
2 , −1

2⟩ = |3
2 , −3

2⟩
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Pion-nucleon scattering

Pion-nucleon scattering processes (πN → πN).

(a) π+ + p → π+ + p
(f) π− + n → π− + n
(c) π− + p → π− + p
(b) π0 + p → π0 + p
(j) π− + p → π0 + n

| 3
2 , 3

2⟩ → | 3
2 , 3

2⟩
| 3

2 , − 3
2⟩ → | 3

2 , − 3
2⟩√

1
3 | 3

2 , − 1
2⟩−

√
2
3 | 1

2 , − 1
2⟩ →

√
1
3 | 3

2 , − 1
2⟩−

√
2
3 | 1

2 , − 1
2⟩√

2
3 | 3

2 , 1
2⟩ −

√
1
3 | 1

2 , 1
2⟩ →

√
2
3 | 3

2 , 1
2⟩ −

√
1
3 | 1

2 , 1
2⟩√

1
3 | 3

2 , − 1
2⟩−

√
2
3 | 1

2 , − 1
2⟩ →

√
2
3 | 3

2 , − 1
2⟩+

√
1
3 | 1

2 , − 1
2⟩

We have Ma = Mf = M3
Mc = 1

3M3 + 2
3M1

Mb = 2
3M3 + 1

3M1
Mj =

√
2

3 M3 −
√

2
3 M1

σa : σc : σj = 9|M3|2: |M3 + 2M1|2: 2|M3 − M1|2
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Quick data analysis concept

Consider doing this scattering experiment (with π± and protons).

Let me explain one quick concept first.
Suppose you have a decay of particle A → B + C
Evidently conservation of energy-momentum ⇒ pA = pB + pC
(where p are 4-vectors!)
Experimentally we measure pB and pC , and thus calculate (pB + pC )2,
but this is just p2

A and p2
A = m2

A
i.e.

√
(pB + pC )2 = mA

Thus by measuring the 4-vectors of the daughters (B, C), we are able to
infer the mass of the mother (A). The LHS calculated quantity is called
the invariant mass of B and C and is calculated from the
observed/measured 4-vectors of B and C .
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Invariant mass

Given two 4-vectors p and q, with components
(Ep, px , py , pz) and (Eq, qx , qy , qz) respectively,

the invariant mass is defined by first adding the two vectors

r = p + q = (Ep + Eq, px + qx , py + qy , pz + qz)

and then calculating

r2 =
[
(Ep + Eq)2 − (px + qx )2 − (py + qy )2 − (pz + qz)2]
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Invariant mass example

The invariant mass spectrum of two charged leptons.
i.e either two muons (µ+µ−) or two electrons (e+e−)
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Pion-nucleon scattering
Consider doing this scattering experiment (with π± and protons).
Given that measuring total cross section is easier, we can measure the
total cross section of (π+ + p) vs (π− + p)

(a) π+ + p → π+ + p (c) π− + p → π− + p
(j) π− + p → π0 + n

σa : σc : σj =
9|M3|2: |M3 + 2M1|2: 2|M3 − M1|2

At a CM energy of 1232 MeV, we get the
∆ ‘resonance’ (I = 3

2), thus M3 ≫ M1 and

σa : σc : σj = 9 : 1 : 2
σtot(π+ + p)
σtot(π− + p) = 3

Spectrum from Griffiths, quark flow diagram from A.J.Barr
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