PHY 4154

Nuclear and Particle Physics

Sourabh Dube

August 2025

Symmetries

- ▶ Physical laws invariant under some symmetry

 Conservation principle
- ► Time Energy, Rotation Angular momentum

Symmetries

- ▶ Physical laws invariant under some symmetry

 Conservation principle
- ▶ Time

 Energy, Rotation

 Angular momentum
- Some symmetries are perfect (conservation laws hold exactly), some are broken (laws hold approximately).

Symmetries

- ▶ Physical laws invariant under some symmetry

 Conservation principle
- ▶ Time

 Energy, Rotation

 Angular momentum
- Some symmetries are perfect (conservation laws hold exactly), some are broken (laws hold approximately).
- We aim to study angular momentum, discrete symmetries and so on. Let us first consider some additive quantum numbers like charge, and see some formalism.

lacktriangle Consider system described by time-indep H, where ψ satisfies Schrodinger equation

$$i\hbar \frac{d\psi}{dt} = H\psi \tag{1}$$

- ▶ If \hat{F} is an operator, then the observable F in state $\psi(t)$ is given by $\langle \hat{F} \rangle$.
- $ightharpoonup \langle \hat{F} \rangle$ is conserved if

$$[H, \hat{F}] = 0 \Rightarrow \frac{d}{dt} \langle \hat{F} \rangle = 0 \tag{2}$$

How can we find conserved quantities? Check [H, F] for all F!

How can we find conserved quantities? Check [H, F] for all F! or exploit symmetry.

Consider a transformation operator U.

$$\psi'(x,t) = U\psi(x,t)$$

U is unitary $(U^{\dagger}U = I)$ to preserve normalization.

How can we find conserved quantities? Check [H, F] for all F! or exploit symmetry.

Consider a transformation operator U.

$$\psi'(x,t) = U\psi(x,t)$$

U is unitary $(U^{\dagger}U = I)$ to preserve normalization.

If ψ' satisfies same Schrodinger equation, U is a symmetry operator.

How can we find conserved quantities? Check [H, F] for all F! or exploit symmetry.

Consider a transformation operator U.

$$\psi'(x,t) = U\psi(x,t)$$

U is unitary $(U^{\dagger}U = I)$ to preserve normalization.

- ▶ If ψ' satisfies same Schrodinger equation, U is a symmetry operator.
- We have

$$i\hbar \frac{d}{dt}(U\psi) = H(U\psi) \Rightarrow i\hbar \frac{d\psi}{dt} = U^{-1}HU\psi$$
$$\therefore H = U^{-1}HU = U^{\dagger}HU \Rightarrow [H, U] = 0$$

▶ The symmetry operator commutes with the Hamiltonian.

▶ Comparing $[H, \hat{F}] = 0$ and [H, U] = 0, we can say that if U is hermitian, it will be an observable and will be conserved.

- ▶ Comparing $[H, \hat{F}] = 0$ and [H, U] = 0, we can say that if U is hermitian, it will be an observable and will be conserved.
- Transformations can be continuous (rotation) or non-continuous (parity).

- ▶ Comparing $[H, \hat{F}] = 0$ and [H, U] = 0, we can say that if U is hermitian, it will be an observable and will be conserved.
- Transformations can be continuous (rotation) or non-continuous (parity).
- ▶ For continuous transformations we can write

$$U = e^{i\epsilon F}$$

where F is the generator of the transformation, and ϵ is a real parameter.

► So
$$U\psi = e^{i\epsilon F}\psi = (1 + i\epsilon F + \frac{(i\epsilon F)^2}{2!} + \cdots)\psi$$

- So $U\psi = e^{i\epsilon F}\psi = (1 + i\epsilon F + \frac{(i\epsilon F)^2}{2!} + \cdots)\psi$
- ightharpoonup Since U is unitary for symmetry operations, F is hermitian.

- So $U\psi = e^{i\epsilon F}\psi = (1 + i\epsilon F + \frac{(i\epsilon F)^2}{2!} + \cdots)\psi$
- Since U is unitary for symmetry operations, F is hermitian.
- $U^{\dagger}U = 1 \Rightarrow exp(-i\epsilon F^{\dagger})exp(i\epsilon F) = exp[i\epsilon(F^{\dagger} F)] = 1$
- Considering infinitesimally small transformations, $U=(1+i\epsilon F), \epsilon F\ll 1$, and that [H,U]=0, we can show that [H,F]=0.

- So $U\psi = e^{i\epsilon F}\psi = (1 + i\epsilon F + \frac{(i\epsilon F)^2}{2!} + \cdots)\psi$
- Since U is unitary for symmetry operations, F is hermitian.
- $lacksquare U^{\dagger}U=1\Rightarrow exp(-i\epsilon F^{\dagger})exp(i\epsilon F)=exp[i\epsilon(F^{\dagger}-F)]=1$
- Considering infinitesimally small transformations, $U=(1+i\epsilon F), \epsilon F\ll 1$, and that [H,U]=0, we can show that [H,F]=0.
- \blacktriangleright If U is not hermitian, then F is the corresponding observable.

- So $U\psi = e^{i\epsilon F}\psi = (1 + i\epsilon F + \frac{(i\epsilon F)^2}{2!} + \cdots)\psi$
- Since U is unitary for symmetry operations, F is hermitian.
- $lacksquare U^{\dagger}U=1\Rightarrow exp(-i\epsilon F^{\dagger})exp(i\epsilon F)=exp[i\epsilon(F^{\dagger}-F)]=1$
- Considering infinitesimally small transformations, $U=(1+i\epsilon F), \epsilon F\ll 1$, and that [H,U]=0, we can show that [H,F]=0.
- \triangleright If *U* is not hermitian, then *F* is the corresponding observable.
- ► Invariance under continuous transform Additive conservation law.
 Invariance under noncontinuous transform Multiplicative conservation law.

Let $\psi'(x) = U(\Delta)\psi(x)$ (Δ displacement along x). If system is invariant under translation, then ψ and ψ' both satisfy the Schrodinger equation, and [H,U]=0.

Let $\psi'(x) = U(\Delta)\psi(x)$ (Δ displacement along x). If system is invariant under translation, then ψ and ψ' both satisfy the Schrodinger equation, and [H,U]=0.

System is invariant $\Rightarrow \psi'(x + \Delta) = \psi(x)$

Let $\psi'(x) = U(\Delta)\psi(x)$ (Δ displacement along x). If system is invariant under translation, then ψ and ψ' both satisfy the Schrodinger equation, and [H,U]=0.

- System is invariant $\Rightarrow \psi'(x + \Delta) = \psi(x)$
- \triangleright For small \triangle

$$\psi(x) = \psi'(x) + \frac{d\psi'}{dx}\Delta = (1 + \Delta \frac{d}{dx})\psi'$$

Let $\psi'(x) = U(\Delta)\psi(x)$ (Δ displacement along x). If system is invariant under translation, then ψ and ψ' both satisfy the Schrodinger equation, and [H,U]=0.

- System is invariant $\Rightarrow \psi'(x + \Delta) = \psi(x)$
- For small Δ

$$\psi(x) = \psi'(x) + \frac{d\psi'}{dx}\Delta = (1 + \Delta \frac{d}{dx})\psi'$$

$$\hookrightarrow (1 - \Delta \frac{d}{dx})\psi = (1 - \Delta \frac{d}{dx})(1 + \Delta \frac{d}{dx})\psi'$$

$$(1 - \Delta \frac{d}{dx})\psi = (1)\psi'$$

ignoring terms of $\mathcal{O}(\Delta^2)$ in the last step.

$$(1 - \Delta \frac{d}{dx})\psi = \psi'$$

▶ Thus $U(\Delta) \sim (1 - \Delta \frac{d}{dx})$.

$$(1 - \Delta \frac{d}{dx})\psi = \psi'$$

- ▶ Thus $U(\Delta) \sim (1 \Delta \frac{d}{dx})$.
- ▶ Generator proportional to linear momentum operator $i\frac{d}{dx}$.

$$(1 - \Delta \frac{d}{dx})\psi = \psi'$$

- ▶ Thus $U(\Delta) \sim (1 \Delta \frac{d}{dx})$.
- ▶ Generator proportional to linear momentum operator $i\frac{d}{dx}$.
- ightharpoonup Invariance under translation ightharpoonup conservation of momentum.

$$(1 - \Delta \frac{d}{dx})\psi = \psi'$$

- ▶ Thus $U(\Delta) \sim (1 \Delta \frac{d}{dx})$.
- ▶ Generator proportional to linear momentum operator $i\frac{d}{dx}$.
- ▶ Invariance under translation \rightarrow conservation of momentum.
- Similarly we can show invariance under a local gauge transformation → conservation of charge.
- A local gauge transformation is $\psi' = e^{i\epsilon(\vec{x},t)Q}\psi$, where ϵ is real and arbitrary, and Q is charge operator with [H,Q]=0.

- ▶ Absence of $e \rightarrow \nu \gamma$ implies electric charge is conserved.
- ▶ Total charge conserved in a reaction, so if $a + b \rightarrow c + d + e$, then $N_a + N_b = N_c + N_d + N_e$ where charge of a particle q = Ne (an integral multiple of e).
- ► This is an additive conservation law. What is the symmetry principle?

ightharpoonup Say, ψ described a state with charge q, and satisfies

$$i\hbar \frac{d\psi}{dt} = H\psi$$

▶ If Q is the charge operator, then $\langle Q \rangle$ is conserved and [Q, H] = 0 and thus Q and H have simultaneous eigenfunctions

$$Q\psi = q\psi$$

and the eigenvalue q is also conserved.

▶ Here a gauge transformation is the symmetry

$$\psi' = e^{i\epsilon Q} \psi$$

where ϵ is real and arbitrary.

We'll now illustrate that q is electric charge using local gauge invariance.

- Let q be electric charge, and say there is a static E-field with $\vec{E} = -\vec{\nabla}A_0$, where A_0 is the scalar potential (\vec{A} is the vector potential).
- We have $H = H_0 + qA_0$, where H_0 is the Hamiltonian when E-field is absent.

We'll now illustrate that q is electric charge using local gauge invariance.

- Let q be electric charge, and say there is a static E-field with $\vec{E} = -\vec{\nabla}A_0$, where A_0 is the scalar potential (\vec{A} is the vector potential).
- We have $H = H_0 + qA_0$, where H_0 is the Hamiltonian when E-field is absent.
- For free particle, $H_0 = p^2/2m = -\hbar^2\nabla^2/2m$
- ▶ The E, B fields are unchanged by gauge transformations $A_0 \rightarrow A'_0$, and $\vec{A} \rightarrow \vec{A}'$.
- ▶ If $\Lambda(\vec{x}, t)$ is an arbitrary function of position and time,

$$A_0' = A_0 - \frac{1}{c} \frac{\partial}{\partial t} \Lambda(\vec{x}, t)$$

 $\vec{A}' = \vec{A} + \vec{\nabla} \Lambda(\vec{x}, t)$

A local gauge transformation is $\psi' = e^{i\epsilon(\vec{x},t)Q}\psi$.

- Let us take $\Lambda(t)$, $\epsilon(t)$ to simplify algebra (no \vec{x} dependence).
- Impose invariance under local gauge transformation

$$i\hbar\frac{\partial\psi'}{\partial t}=(H_0+qA_0')\psi'$$

A local gauge transformation is $\psi' = e^{i\epsilon(\vec{x},t)Q}\psi$

- Let us take $\Lambda(t)$, $\epsilon(t)$ to simplify algebra (no \vec{x} dependence).
- Impose invariance under local gauge transformation

$$i\hbar\frac{\partial\psi'}{\partial t}=(H_0+qA_0')\psi'$$

Put in A'_0 and ψ'

$$\begin{split} i\hbar\frac{\partial}{\partial t}(e^{i\epsilon(t)Q}\psi) &= \left(\frac{-\hbar^2}{2m}\nabla^2 + qA_0 - \frac{q}{c}\frac{\partial\Lambda}{\partial t}\right)e^{i\epsilon(t)Q}\psi\\ e^{i\epsilon(t)Q}\left(i\hbar\frac{\partial\psi}{\partial t} - \hbar Q\psi\frac{\partial\epsilon}{\partial t}\right) &= e^{i\epsilon(t)Q}\left(\frac{-\hbar^2}{2m}\nabla^2 + qA_0 - \frac{q}{c}\frac{\partial\Lambda}{\partial t}\right)\psi \end{split}$$

This gives

$$\hbar Q \frac{\partial \epsilon}{\partial t} = \frac{q}{c} \frac{\partial \Lambda(t)}{\partial t}$$

$$\hbar Q \frac{\partial \epsilon}{\partial t} = \frac{q}{c} \frac{\partial \Lambda(t)}{\partial t}$$

Since $\epsilon(t)$ and $\Lambda(t)$ are arbitrary functions of space/time, say

$$\Lambda(t) = \hbar c \epsilon(t)$$

Together this gives us $Q\psi = q\psi$.

As phase of the wavefunction varies as $\epsilon(\vec{x},t)$, the variation is counteracted by corresponding changes in EM potential given by $\Lambda(\vec{x},t)=\hbar c\epsilon(\vec{x},t)$.

Consider an experiment setup in the X-Y plane, described by wave function $\psi(\vec{x})$.

Let us perform a rotation around the Z axis, by an angle ϕ .

Consider an experiment setup in the X-Y plane, described by wave function $\psi(\vec{x})$.

Let us perform a rotation around the Z axis, by an angle ϕ .

This rotation can be written as $\vec{x}^R = R_z(\phi)\vec{x}$ ($R_z(\phi)$ denotes rotation by ϕ around the z axis. The rotated wave function can be written as

$$\psi^R(\vec{x}) = U_z(\phi)\psi(\vec{x})$$

written as

Consider an experiment setup in the X-Y plane, described by wave function $\psi(\vec{x})$.

Let us perform a rotation around the Z axis, by an angle ϕ . This rotation can be written as $\vec{x}^R = R_z(\phi)\vec{x}$ ($R_z(\phi)$ denotes rotation by ϕ around the z axis. The rotated wave function can be

$$\psi^R(\vec{x}) = U_z(\phi)\psi(\vec{x})$$

Now let us say the system is invariant under rotation. This implies

$$\psi^R(\vec{x}^R) = \psi(\vec{x})$$

Consider an experiment setup in the X-Y plane, described by wave function $\psi(\vec{x})$.

Let us perform a rotation around the Z axis, by an angle ϕ . This rotation can be written as $\vec{x}^R = R_z(\phi)\vec{x}$ ($R_z(\phi)$ denotes

rotation by ϕ around the z axis. The rotated wave function can be written as

$$\psi^R(\vec{x}) = U_z(\phi)\psi(\vec{x})$$

Now let us say the system is invariant under rotation. This implies

$$\psi^R(\vec{x}^R) = \psi(\vec{x})$$

We now need to express $\psi^R(\vec{x}^R)$ in terms of $\psi^R(\vec{x})$.

We now need to express $\psi^R(\vec{x}^R)$ in terms of $\psi^R(\vec{x})$.

We now need to express $\psi^R(\vec{x}^R)$ in terms of $\psi^R(\vec{x})$. Take an infinitesimal rotation $\delta\phi$ about Z-axis.

$$\psi^{R}(\vec{x}^{R}) = \psi^{R}(\vec{x}) + \frac{\partial \psi^{R}(\vec{x})}{\partial \phi} \delta \phi = \left(1 + \delta \phi \frac{\partial}{\partial \phi}\right) \psi^{R}(\vec{x})$$

We now need to express $\psi^R(\vec{x}^R)$ in terms of $\psi^R(\vec{x})$. Take an infinitesimal rotation $\delta\phi$ about Z-axis.

$$\psi^{R}(\vec{x}^{R}) = \psi^{R}(\vec{x}) + \frac{\partial \psi^{R}(\vec{x})}{\partial \phi} \delta \phi = \left(1 + \delta \phi \frac{\partial}{\partial \phi}\right) \psi^{R}(\vec{x})$$

As earlier, we can show now that

$$\psi^{R}(\vec{x}) = \left(1 - \delta\phi \frac{\partial}{\partial\phi}\right) \psi^{R}(\vec{x}^{R}) = \left(1 - \delta\phi \frac{\partial}{\partial\phi}\right) \psi(\vec{x})$$

where we have

- (a) neglected terms of $\mathcal{O}(\delta^2)$ and
- (b) used rotational invariance (i.e. $\psi(\vec{x}) = \psi^R(\vec{x}^R)$)

Looking at

$$\psi^{R}(\vec{x}) = \left(1 - \delta\phi \frac{\partial}{\partial\phi}\right) \psi(\vec{x})$$

we get

$$U_{\mathsf{z}}(\delta\phi) = \left(1 - \delta\phi \frac{\partial}{\partial\phi}\right)$$

Looking at

$$\psi^{R}(\vec{x}) = \left(1 - \delta\phi \frac{\partial}{\partial\phi}\right) \psi(\vec{x})$$

we get

$$U_{z}(\delta\phi) = \left(1 - \delta\phi \frac{\partial}{\partial\phi}\right)$$

Comparing to $\hat{U}=e^{i\epsilon F}=(1+i\epsilon \hat{F})$, we can say $\epsilon=\delta\phi$ and $\hat{F}=i\partial/\partial\phi$.

Looking at

$$\psi^R(\vec{x}) = \left(1 - \delta\phi \frac{\partial}{\partial\phi}\right) \psi(\vec{x})$$

we get

$$U_z(\delta\phi) = \left(1 - \delta\phi \frac{\partial}{\partial\phi}\right)$$

Comparing to $\hat{U}=e^{i\epsilon F}=(1+i\epsilon \hat{F})$, we can say $\epsilon=\delta\phi$ and $\hat{F}=i\partial/\partial\phi$. Of course, the eigenfunctions and eigenvalues of \hat{F} are known...

$$\hat{F} = -\frac{\hat{L}_z}{\hbar}$$

Classically, angular momentum is $\vec{L} = \vec{r} \times m\vec{v}$. In QM, (a)L is quantized (b)Can't measure all 3 components at same time.

Classically, angular momentum is $\vec{L} = \vec{r} \times m\vec{v}$. In QM, (a)L is quantized (b)Can't measure all 3 components at same time.

Typically we measure $L^2 = \vec{L} \cdot \vec{L}$, and the z-component L_z .

 $\label{eq:loss_loss} \textit{L}^2: \quad \ell(\ell+1)\hbar^2 \ \ \mathrm{where} \ \ell=0,1,2,3,...$

 $L_z: m_\ell \hbar$ where $m_\ell = -\ell, ..., \ell$ in integer steps

Classically, angular momentum is $\vec{L} = \vec{r} \times m\vec{v}$. In QM, (a)L is quantized (b)Can't measure all 3 components at same time.

Typically we measure $L^2 = \vec{L} \cdot \vec{L}$, and the z-component L_z .

$$\label{eq:loss_loss} \textit{L}^2: \quad \ell(\ell+1) \hbar^2 \ \ \mathrm{where} \ \ell = 0, 1, 2, 3, ...$$

 $L_z: m_\ell \hbar$ where $m_\ell = -\ell, ..., \ell$ in integer steps

Similarly, for spin angular momentum \vec{S} we have

$$S^2$$
: $s(s+1)\hbar^2$ where $s = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, ...$

 $S_z: m_s \hbar$ where $m_s = -s, ..., s$ in integer steps

Classically, angular momentum is $\vec{L} = \vec{r} \times m\vec{v}$. In QM, (a)L is quantized (b)Can't measure all 3 components at same time.

Typically we measure $L^2 = \vec{L} \cdot \vec{L}$, and the z-component L_z .

$$\label{eq:loss_loss} \textit{L}^2: \quad \ell(\ell+1)\hbar^2 \ \ \mathrm{where} \ \ell=0,1,2,3,...$$

 $L_z: m_\ell \hbar$ where $m_\ell = -\ell, ..., \ell$ in integer steps

Similarly, for spin angular momentum \vec{S} we have

$$S^2$$
: $s(s+1)\hbar^2$ where $s = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, ...$

$$S_z: m_s \hbar$$
 where $m_s = -s, ..., s$ in integer steps

Fundamental particles have fixed spin.

Composite particles in addition have L, and several L states are possible. Thus electrons, protons have $s=\frac{1}{2}$, pions or kaons have s=0, and photons or gluons have s=1.

Let us denote angular momentum states as follows: $|\ell, m_{\ell}\rangle$ or $|s, m_{s}\rangle$.

The total angular momentum, in situations where say orbital and spin angular momenta get coupled is obtained by $\mathbf{J} = \mathbf{L} + \mathbf{S}$.

Let us denote angular momentum states as follows: $|\ell,m_\ell\rangle$ or $|s,m_s\rangle$.

The total angular momentum, in situations where say orbital and spin angular momenta get coupled is obtained by $\mathbf{J} = \mathbf{L} + \mathbf{S}$.

Suppose we have two states $|j_1, m_1\rangle$, and $|j_2, m_2\rangle$, the sum of them will be denoted as $|j, m\rangle$.

In a straightforward way, we will have $m=m_1+m_2$

The j will take values as $j = (j_1 + j_2), ..., |j_1 - j_2|$ in integer steps.

Thus if the states are $|1,0\rangle$ and $|\frac{1}{2},\frac{1}{2}\rangle$, then $m=\frac{1}{2}$, and j can take two values, $1+\frac{1}{2}$ and $1-\frac{1}{2}$, $j=\frac{3}{2},\frac{1}{2}$.

Thus we can get two states, $|\frac{3}{2},\frac{1}{2}\rangle$ and $|\frac{1}{2},\frac{1}{2}\rangle$ from the addition of $|1,0\rangle$ and $|\frac{1}{2},\frac{1}{2}\rangle$

We write this as

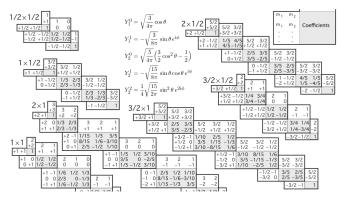
$$|1,0\rangle|\frac{1}{2},\frac{1}{2}\rangle=\alpha|\frac{3}{2},\frac{1}{2}\rangle+\beta|\frac{1}{2},\frac{1}{2}\rangle$$

with the ability to calculate α and β .

In general

$$|j_1, m_1\rangle |j_2, m_2\rangle = \sum_{j=|j_1-j_2|}^{j_1+j_2} C_{mm1m2}^{j\ j1\ j2} |j, m\rangle$$

Here the C's are Clebsch-Gordon coefficients, and we can look them up in a table.



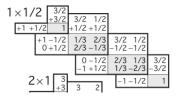
Google clebsch site:pdg.lbl.gov/2024/, (pdf) is on our website.

$$|1,0\rangle|\frac{1}{2},\frac{1}{2}\rangle=\alpha|\frac{3}{2},\frac{1}{2}\rangle+\beta|\frac{1}{2},\frac{1}{2}\rangle$$

Here we are adding $j_1=1$ and $j_2=\frac{1}{2}$, so look for the $1\times 1/2$ table.

$$|1,0\rangle|\frac{1}{2},\frac{1}{2}\rangle=\alpha|\frac{3}{2},\frac{1}{2}\rangle+\beta|\frac{1}{2},\frac{1}{2}\rangle$$

Here we are adding $j_1 = 1$ and $j_2 = \frac{1}{2}$, so look for the $1 \times 1/2$ table.



Here $m_1=0$ and $m_2=\frac{1}{2}$, so look for the row corresponding to 0,1/2. This gives two numbers 2/3 and -1/3

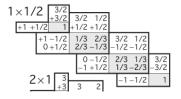
Remember to take the square root and we can write

$$|1,0\rangle|\frac{1}{2},\frac{1}{2}\rangle = \sqrt{\frac{2}{3}} \,\,|\frac{3}{2},\frac{1}{2}\rangle - \sqrt{\frac{1}{3}}\,\,|\frac{1}{2},\frac{1}{2}\rangle$$

Addition of Angular momentum: another example

$$|1,1\rangle|\frac{1}{2},-\frac{1}{2}\rangle=\alpha|\frac{3}{2},\frac{1}{2}\rangle+\beta|\frac{1}{2},\frac{1}{2}\rangle$$

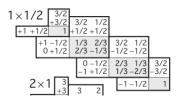
Here we are adding $j_1=1$ and $j_2=\frac{1}{2}$, so look for the $1\times 1/2$ table.



Addition of Angular momentum: another example

$$|1,1\rangle|\frac{1}{2},-\frac{1}{2}\rangle=\alpha|\frac{3}{2},\frac{1}{2}\rangle+\beta|\frac{1}{2},\frac{1}{2}\rangle$$

Here we are adding $j_1 = 1$ and $j_2 = \frac{1}{2}$, so look for the $1 \times 1/2$ table.



Here $m_1=1$ and $m_2=-\frac{1}{2}$, so look for the row corresponding to 1,-1/2. This gives two numbers

This gives two numbers 1/3 and 2/3

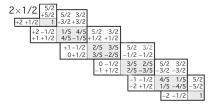
Remember to take the square root and we can write

$$|1,1\rangle|\frac{1}{2},-\frac{1}{2}\rangle=\sqrt{\frac{1}{3}}\;|\frac{3}{2},\frac{1}{2}\rangle+\sqrt{\frac{2}{3}}\;|\frac{1}{2},\frac{1}{2}\rangle$$

Addition of Angular momentum: and one more

$$|2,-1\rangle|\frac{1}{2},\frac{1}{2}\rangle=\alpha|\frac{5}{2},-\frac{1}{2}\rangle+\beta|\frac{3}{2},-\frac{1}{2}\rangle$$

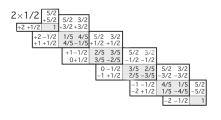
Here we are adding $j_1=2$ and $j_2=\frac{1}{2}$, so look for the $2\times 1/2$ table.



Addition of Angular momentum: and one more

$$|2,-1\rangle|\frac{1}{2},\frac{1}{2}\rangle=\alpha|\frac{5}{2},-\frac{1}{2}\rangle+\beta|\frac{3}{2},-\frac{1}{2}\rangle$$

Here we are adding $j_1=2$ and $j_2=\frac{1}{2}$, so look for the $2\times 1/2$ table.



Here $m_1 = -1$ and $m_2 = \frac{1}{2}$, so look for the row corresponding to -1, 1/2.

This gives two numbers 2/5 and -3/5

Remember to take the square root and we can write

$$|2,-1\rangle|\frac{1}{2},\frac{1}{2}\rangle = \sqrt{\frac{2}{5}} \ |\frac{5}{2},-\frac{1}{2}\rangle - \sqrt{\frac{3}{5}} \ |\frac{3}{2},-\frac{1}{2}\rangle$$

A quark and an antiquark are bound together, in a state with orbital momentum L=0, to form a meson.

A quark and an antiquark are bound together, in a state with orbital momentum L=0, to form a meson.

Quarks carry spin $\frac{1}{2}$, so we have 2 spin $\frac{1}{2}$ particles. The possible values of j are j=0,1 and m=0 or m=-1,0,1 depending on the j value.

A quark and an antiquark are bound together, in a state with orbital momentum L=0, to form a meson.

Quarks carry spin $\frac{1}{2}$, so we have 2 spin $\frac{1}{2}$ particles. The possible values of i are i = 0, 1

and m = 0 or m = -1, 0, 1 depending on the j value.

$$\begin{split} |\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle &= |1,1\rangle \\ |\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle &= \frac{1}{\sqrt{2}}|1,0\rangle + \frac{1}{\sqrt{2}}|0,0\rangle \\ |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle &= \frac{1}{\sqrt{2}}|1,0\rangle - \frac{1}{\sqrt{2}}|0,0\rangle \\ |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle &= |1,-1\rangle \end{split}$$

A quark and an antiquark are bound together, in a state with orbital momentum L=0, to form a meson.

Inverting..

$$\begin{split} |1,1\rangle &= |\frac{1}{2},\frac{1}{2}\rangle |\frac{1}{2},\frac{1}{2}\rangle \\ |1,0\rangle &= \frac{1}{\sqrt{2}} |\frac{1}{2},\frac{1}{2}\rangle |\frac{1}{2},-\frac{1}{2}\rangle + \frac{1}{\sqrt{2}} |\frac{1}{2},-\frac{1}{2}\rangle |\frac{1}{2},\frac{1}{2}\rangle \\ |1,-1\rangle &= |\frac{1}{2},-\frac{1}{2}\rangle |\frac{1}{2},-\frac{1}{2}\rangle \end{split}$$

$$|0,0\rangle = \frac{1}{\sqrt{2}}|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle - \frac{1}{\sqrt{2}}|\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle$$

We observe $u\bar{u}$ bound states. (In practice it is a $\frac{u\bar{u}-dd}{\sqrt{2}}$ bound state) When J=0 it is a π^0 meson ($m_{\pi^0}=135$ MeV), whereas in a J=1 bound state, it is a ρ^0 meson ($m_{\rho^0}=775$ MeV).

A quark and an antiquark are bound together, in a state with orbital momentum L=0, to form a meson.

Inverting..

$$\begin{split} |1,1\rangle &= |\frac{1}{2},\frac{1}{2}\rangle |\frac{1}{2},\frac{1}{2}\rangle \\ |1,0\rangle &= \frac{1}{\sqrt{2}} |\frac{1}{2},\frac{1}{2}\rangle |\frac{1}{2},-\frac{1}{2}\rangle + \frac{1}{\sqrt{2}} |\frac{1}{2},-\frac{1}{2}\rangle |\frac{1}{2},\frac{1}{2}\rangle \\ |1,-1\rangle &= |\frac{1}{2},-\frac{1}{2}\rangle |\frac{1}{2},-\frac{1}{2}\rangle \end{split}$$

$$|0,0\rangle = \frac{1}{\sqrt{2}}|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle - \frac{1}{\sqrt{2}}|\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle$$

We observe $u\bar{u}$ bound states. (In practice it is a $\frac{u\bar{u}-dd}{\sqrt{2}}$ bound state) When J=0 it is a π^0 meson ($m_{\pi^0}=135$ MeV), whereas in a J=1 bound state, it is a ρ^0 meson ($m_{\rho^0}=775$ MeV).

(In practice this is more complicated).

Now say we have three quarks bound together, with say L=0, to form a baryon.

Thus $j = \frac{3}{2}, \frac{1}{2}$.

The baryon can have spin of $\frac{3}{2}$, or it can have spin of $\frac{1}{2}$ in two ways (i)first two add to 1 and we subtract $\frac{1}{2}$ or (ii)first two add to 0 and we add $\frac{1}{2}$.

We have the $\frac{3}{2}$ give the baryon decuplet, and one $\frac{1}{2}$ give the baryon octet, and in the quark model, we can have another family with $s=\frac{1}{2}$.

A quick point to note.

Its important to note the number of states before and after, and see that they match up.

If we add two spin $\frac{1}{2}$ particles, the number of states before and after are four.

$$|\frac{1}{2}, -\frac{1}{2}\rangle|\frac{1}{2}, -\frac{1}{2}\rangle$$

$$|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle$$

$$| \frac{1}{2}, -\frac{1}{2} \rangle | \frac{1}{2}, \frac{1}{2} \rangle$$

$$| \frac{1}{2}, \frac{1}{2} \rangle | \frac{1}{2}, \frac{1}{2} \rangle$$

$$ightharpoonup$$
 $|1,1\rangle$

$$ightharpoonup$$
 $|1,-1\rangle$

One should check this when adding angular momenta.

Consider the original beta-decay reaction, $n \to p + e$. Does this satisfy conservation of angular momentum?

Consider the original beta-decay reaction, $n \to p + e$. Does this satisfy conservation of angular momentum?

No. All of these particles have spin $\frac{1}{2}$.

Consider the original beta-decay reaction, $n \rightarrow p + e$. Does this satisfy conservation of angular momentum?

No. All of these particles have spin $\frac{1}{2}$.

Given the reaction is $n \to p + e + \bar{\nu}_e$, what spin can the neutrino have?

Consider the original beta-decay reaction, $n \to p + e$. Does this satisfy conservation of angular momentum?

No. All of these particles have spin $\frac{1}{2}$.

Given the reaction is $n \to p + e + \bar{\nu}_e$, what spin can the neutrino have?

So we have on the left $|j=\frac{1}{2},m_1\rangle_{\rm n}$ for the neutron.

On the right we have $|j_1=\frac{1}{2},m_2
angle_{
m p}|j_2=\frac{1}{2},m_3
angle_{
m e}|S,m_4
angle_{
u}$

Consider the original beta-decay reaction, $n \to p + e$. Does this satisfy conservation of angular momentum?

No. All of these particles have spin $\frac{1}{2}$.

Given the reaction is $n o p + e + \bar{\nu}_e$, what spin can the neutrino have?

So we have on the left $|j=\frac{1}{2},m_1\rangle_{\mathrm{n}}$ for the neutron.

On the right we have $|j_1=\frac{1}{2},m_2
angle_{
m p}|j_2=\frac{1}{2},m_3
angle_{
m e}|S,m_4
angle_{
u}$

We need $j_1 = \frac{1}{2}$, $j_2 = \frac{1}{2}$, and S to "add" to give us $j = \frac{1}{2}$. (i.e. $i = i_1 + i_2 + S$)

$$j=j_1+j_2+S)$$

 $j' = j_1 + j_2$ can take values 1, or 0.

Consider the original beta-decay reaction, $n \to p + e$. Does this satisfy conservation of angular momentum?

No. All of these particles have spin $\frac{1}{2}$.

Given the reaction is $n \to p + e + \bar{\nu}_e$, what spin can the neutrino have?

So we have on the left $|j=\frac{1}{2},m_1\rangle_{\mathrm{n}}$ for the neutron.

On the right we have $|j_1=\frac{1}{2},m_2
angle_{
m p}|j_2=\frac{1}{2},m_3
angle_{
m e}|S,m_4
angle_
u$

We need $j_1 = \frac{1}{2}$, $j_2 = \frac{1}{2}$, and S to "add" to give us $j = \frac{1}{2}$. (i.e. $j = j_1 + j_2 + S$)

 $j' = j_1 + j_2$ can take values 1, or 0.

This means that S has to take value of either $\frac{1}{2}$ or $\frac{3}{2}$, such that when we do j=j'+S, we will be able to get $j=\frac{1}{2}$.

Spin Angular momentum and Spinors

Spin and the corresponding formalism is fairly important and useful. We can write a spin-up (\uparrow) state as $|\frac{1}{2},\frac{1}{2}\rangle$ and a spin-down (\downarrow) as $|\frac{1}{2},-\frac{1}{2}\rangle$

We can instead also define the two states (\uparrow and \downarrow), by using two-component column vectors.

$$|1/2,1/2\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1/2,-1/2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

These are called as spinors.

Spin Angular momentum and Spinors

Spin and the corresponding formalism is fairly important and useful. We can write a spin-up (\uparrow) state as $|\cancel{1},\cancel{1}\rangle$ and a spin-down (\downarrow) as $|\cancel{1},\cancel{1}\rangle$

We can instead also define the two states (\uparrow and \downarrow), by using two-component column vectors.

$$|\frac{1}{2},\frac{1}{2}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |\frac{1}{2},-\frac{1}{2}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

These are called as spinors.

Typically the most general state of a spin- $\frac{1}{2}$ particle is

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

with $|\alpha|^2+|\beta|^2=1$ being the normalization condition. Obviously, these form a basis in this spin-space.

Spin Angular momentum and Spinors

We have
$$\hat{S}_z | \frac{1}{2}, \pm \frac{1}{2} \rangle = \frac{\hbar}{2} | \frac{1}{2}, \pm \frac{1}{2} \rangle$$

For the spinor notation, we define

$$\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

This naturally gives us

$$\begin{split} \hat{S}_z \begin{pmatrix} 1 \\ 0 \end{pmatrix} &= \frac{\hbar}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \hat{S}_z \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= -\frac{\hbar}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{split}$$

We define the Pauli spin matrices as

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

and define the components of spin as $\hat{\mathbf{S}} = \left(\frac{\hbar}{2}\right)\sigma$.

We define the Pauli spin matrices as

$$\sigma_{\mathsf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{\mathsf{y}} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{\mathsf{z}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

and define the components of spin as $\hat{\mathbf{S}} = \left(\frac{\hbar}{2}\right)\sigma$.

Thus
$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{\hbar}{2} \sigma_x$$
.

The eigenvalues of \hat{S}_x are $\pm \frac{\hbar}{2}$ and the eigenvectors are

$$\chi_{+} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \quad \chi_{-} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$

These also form a basis.

Suppose an electron is in the state $\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$

If we measured \hat{S}_x , \hat{S}_y , or \hat{S}_z what values will we get, with what probabilities?

Suppose an electron is in the state $\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$

If we measured \hat{S}_x , \hat{S}_y , or \hat{S}_z what values will we get, with what probabilities?

The eigenvectors of \hat{S}_z are $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and thus

$$\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{2}{\sqrt{5}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Thus if we measure \hat{S}_z , we will get $\hbar/2$ with probability 1/5 and $-\hbar/2$ with probability 4/5.

Suppose an electron is in the state $\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$

If we measured \hat{S}_x , \hat{S}_y , or \hat{S}_z what values will we get, with what probabilities?

The eigenvectors of $\hat{\mathcal{S}}_{x}$ are $\binom{1/\sqrt{2}}{1/\sqrt{2}}$ and $\binom{1/\sqrt{2}}{-1/\sqrt{2}}$,

Suppose an electron is in the state $\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$

If we measured \hat{S}_x , \hat{S}_y , or \hat{S}_z what values will we get, with what probabilities?

The eigenvectors of \hat{S}_x are $\binom{1/\sqrt{2}}{1/\sqrt{2}}$ and $\binom{1/\sqrt{2}}{-1/\sqrt{2}}$, and thus

$$\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} = \frac{3}{\sqrt{10}} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} - \frac{1}{\sqrt{10}} \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$

Thus if we measure \hat{S}_x , we will get $\hbar/2$ with probability 9/10 and $-\hbar/2$ with probability 1/10.

Suppose an electron is in the state $\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$

If we measured \hat{S}_x , \hat{S}_y , or \hat{S}_z what values will we get, with what probabilities?

The eigenvectors of \hat{S}_x are $\binom{1/\sqrt{2}}{1/\sqrt{2}}$ and $\binom{1/\sqrt{2}}{-1/\sqrt{2}}$, and thus

$$\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} = \frac{3}{\sqrt{10}} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} - \frac{1}{\sqrt{10}} \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$

Thus if we measure \hat{S}_x , we will get $\hbar/2$ with probability 9/10 and $-\hbar/2$ with probability 1/10.

HW: find the eigenvectors of \hat{S}_{y} , and find the corresponding probabilities.

Some useful properties of the Pauli spin matrices are

$$\sigma_i \sigma_j = \delta_{ij} + i \epsilon_{ijk} \sigma_k$$

where δ_{ij} is the Kronecker delta, and ϵ_{ijk} is the Levi–Civita symbol.

The commutation relations are

$$[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$$

$$\{\sigma_i, \sigma_j\} = 2\delta_{ij}$$

Also, for any two vectors a and b,

$$(\sigma \cdot a)(\sigma \cdot b) = a \cdot b + i\sigma \cdot (a \times b)$$

Rotating spinors

A spinor transforms as follows when we rotate the coordinate axes

$$\begin{pmatrix} \alpha' \\ \beta' \end{pmatrix} = U(\theta) \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 where $U(\theta) = e^{-i(\theta \cdot \sigma)/2}$

The vector θ points along the axis of rotation, and its magnitude is the angle of rotation about that axis.

Rotating spinors

A spinor transforms as follows when we rotate the coordinate axes

$$\begin{pmatrix} \alpha' \\ \beta' \end{pmatrix} = U(\theta) \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 where $U(\theta) = e^{-i(\theta \cdot \sigma)/2}$

The vector θ points along the axis of rotation, and its magnitude is the angle of rotation about that axis.

So for a rotation around Z axis by angle δ , the operator would be

$$U(\delta) = \exp(\frac{-i\delta\sigma_z}{2})$$

And for a general wave function, the operator would be

$$U(\theta) = e^{-i(\theta \cdot J)/\hbar}$$

Angular momentum

Let us rewrite the operator as

$$U(\theta) = exp(\frac{-i\theta \cdot J}{\hbar}) = exp(\frac{-i\delta\hat{n} \cdot J}{\hbar}) = U_n(\delta)$$

where δ is the magnitude of the rotation, and \hat{n} is a unit vector along the axis of rotation.

Angular momentum

Let us rewrite the operator as

$$U(\theta) = exp(\frac{-i\theta \cdot J}{\hbar}) = exp(\frac{-i\delta\hat{n} \cdot J}{\hbar}) = U_n(\delta)$$

where δ is the magnitude of the rotation, and \hat{n} is a unit vector along the axis of rotation.

If the system is invariant under rotation about \hat{n} , then the component of angular momentum along \hat{n} is conserved.

Thus
$$[H, U_n] = 0 \longrightarrow [H, \hat{n} \cdot J] = 0.$$

Angular momentum

Let us rewrite the operator as

$$U(\theta) = exp(\frac{-i\theta \cdot J}{\hbar}) = exp(\frac{-i\delta\hat{n} \cdot J}{\hbar}) = U_n(\delta)$$

where δ is the magnitude of the rotation, and \hat{n} is a unit vector along the axis of rotation.

If the system is invariant under rotation about \hat{n} , then the component of angular momentum along \hat{n} is conserved.

Thus
$$[H, U_n] = 0 \longrightarrow [H, \hat{n} \cdot J] = 0$$
.

Now we note one thing: If a Hamiltonian is $H=H_0+H_{mag}$. If H_0 is isotropic, then we will have $[H_0,J]=0$, but $[H,J]=[H_0+H_{mag},J]\neq 0$. The symmetry is broken.

Of course, the component of J along the magnetic field will still be conserved.