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Symmetries

▶ Physical laws invariant under some symmetry ⇄ Conservation
principle

▶ Time⇄Energy, Rotation⇄Angular momentum

▶ Some symmetries are perfect (conservation laws hold exactly),
some are broken (laws hold approximately).

▶ We aim to study angular momentum, discrete symmetries and
so on. Let us first consider some additive quantum numbers
like charge, and see some formalism.
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Transformation

▶ Consider system described by time-indep H, where ψ satisfies
Schrodinger equation

i h̄ dψ
dt = Hψ (1)

▶ If F̂ is an operator, then the observable F in state ψ(t) is
given by ⟨F̂ ⟩.

▶ ⟨F̂ ⟩ is conserved if

[H, F̂ ] = 0 ⇒ d
dt ⟨F̂ ⟩ = 0 (2)
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Transformation
How can we find conserved quantities? Check [H,F ] for all F!

or exploit symmetry.
▶ Consider a transformation operator U.

ψ′(x , t) = Uψ(x , t)

U is unitary (U†U = I) to preserve normalization.
▶ If ψ′ satisfies same Schrodinger equation, U is a symmetry

operator.
▶ We have

i h̄ d
dt (Uψ) = H(Uψ) ⇒ i h̄ dψ

dt = U−1HUψ

∴ H = U−1HU = U†HU ⇒ [H,U] = 0

▶ The symmetry operator commutes with the Hamiltonian.
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Transformation
▶ Comparing [H, F̂ ] = 0 and [H,U] = 0, we can say that if U is

hermitian, it will be an observable and will be conserved.

▶ Transformations can be continuous (rotation) or
non-continuous (parity).

▶ For continuous transformations we can write

U = eiϵF

where F is the generator of the transformation, and ϵ is a real
parameter.
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Transformation
▶ So Uψ = eiϵFψ = (1 + iϵF + (iϵF )2

2! + · · ·)ψ

▶ Since U is unitary for symmetry operations, F is hermitian.
▶ U†U = 1 ⇒ exp(−iϵF †)exp(iϵF ) = exp[iϵ(F † − F )] = 1
▶ Considering infinitesimally small transformations,

U = (1 + iϵF ), ϵF ≪ 1,
and that [H,U] = 0,
we can show that [H,F ] = 0.

▶ If U is not hermitian, then F is the corresponding observable.

▶ Invariance under continuous transform ⇄ Additive
conservation law.
Invariance under noncontinuous transform ⇄ Multiplicative
conservation law.
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Translation

Let ψ′(x) = U(∆)ψ(x) (∆ displacement along x). If system is
invariant under translation, then ψ and ψ′ both satisfy the
Schrodinger equation, and [H,U] = 0.

▶ System is invariant ⇒ ψ′(x + ∆) = ψ(x)
▶ For small ∆

ψ(x) = ψ′(x) + dψ′

dx ∆ = (1 + ∆ d
dx )ψ′

↪→ (1 − ∆ d
dx )ψ = (1 − ∆ d

dx )(1 + ∆ d
dx )ψ′

(1 − ∆ d
dx )ψ = (1)ψ′

ignoring terms of O(∆2) in the last step.
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Translation

(1 − ∆ d
dx )ψ = ψ′

▶ Thus U(∆) ∼ (1 − ∆ d
dx ).

▶ Generator proportional to linear momentum operator i d
dx .

▶ Invariance under translation → conservation of momentum.
▶ Similarly we can show invariance under a local gauge

transformation → conservation of charge.
▶ A local gauge transformation is ψ′ = eiϵ(x⃗ ,t)Qψ, where ϵ is

real and arbitrary, and Q is charge operator with [H,Q] = 0.
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Charge conservation
▶ Absence of e → νγ implies electric charge is conserved.
▶ Total charge conserved in a reaction, so if

a + b → c + d + e, then Na + Nb = Nc + Nd + Ne
where charge of a particle q = Ne (an integral multiple of e).

▶ This is an additive conservation law. What is the symmetry
principle?
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Charge conservation
▶ Say, ψ described a state with charge q, and satisfies

i h̄ dψ
dt = Hψ

▶ If Q is the charge operator, then ⟨Q⟩ is conserved
and [Q,H] = 0 and thus Q and H have simultaneous
eigenfunctions

Qψ = qψ

and the eigenvalue q is also conserved.
▶ Here a gauge transformation is the symmetry

ψ′ = eiϵQψ

where ϵ is real and arbitrary.
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Charge conservation
We’ll now illustrate that q is electric charge using local gauge
invariance.
▶ Let q be electric charge, and say there is a static E -field with

E⃗ = −∇⃗A0, where A0 is the scalar potential (A⃗ is the vector
potential).

▶ We have H = H0 + qA0, where H0 is the Hamiltonian when
E -field is absent.

▶ For free particle, H0 = p2/2m = −h̄2∇2/2m
▶ The E ,B fields are unchanged by gauge transformations

A0 → A′
0, and A⃗ → A⃗′.

▶ If Λ(x⃗ , t) is an arbitrary function of position and time,

A′
0 = A0 − 1

c
∂

∂t Λ(x⃗ , t)

A⃗′ = A⃗ + ∇⃗Λ(x⃗ , t)
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Charge conservation
A local gauge transformation is ψ′ = eiϵ(x⃗ ,t)Qψ.
▶ Let us take Λ(t), ϵ(t) to simplify algebra (no x⃗ dependence).
▶ Impose invariance under local gauge transformation

i h̄∂ψ
′

∂t = (H0 + qA′
0)ψ′

Put in A′
0 and ψ′

i h̄ ∂
∂t (eiϵ(t)Qψ) =

(
−h̄2

2m ∇2 + qA0 − q
c
∂Λ
∂t

)
eiϵ(t)Qψ

eiϵ(t)Q
(

i h̄∂ψ
∂t − h̄Qψ∂ϵ

∂t

)
= eiϵ(t)Q

(
−h̄2

2m ∇2 + qA0 − q
c
∂Λ
∂t

)
ψ

This gives

h̄Q ∂ϵ

∂t = q
c
∂Λ(t)
∂t
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Charge conservation

h̄Q ∂ϵ

∂t = q
c
∂Λ(t)
∂t

Since ϵ(t) and Λ(t) are arbitrary functions of space/time, say

Λ(t) = h̄cϵ(t)

Together this gives us Qψ = qψ.

As phase of the wavefunction varies as ϵ(x⃗ , t), the variation is
counteracted by corresponding changes in EM potential given by
Λ(x⃗ , t) = h̄cϵ(x⃗ , t).
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Rotational Symmetry
Consider an experiment setup in the X-Y plane, described by wave
function ψ(x⃗).
Let us perform a rotation around the Z axis, by an angle ϕ.

This rotation can be written as x⃗R = Rz(ϕ)x⃗ (Rz(ϕ) denotes
rotation by ϕ around the z axis. The rotated wave function can be
written as

ψR(x⃗) = Uz(ϕ)ψ(x⃗)

Now let us say the system is invariant under rotation. This implies

ψR(x⃗R) = ψ(x⃗)

We now need to express ψR(x⃗R) in terms of ψR(x⃗).
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Rotational Symmetry
We now need to express ψR(x⃗R) in terms of ψR(x⃗).

Take an
infinitesimal rotation δϕ about Z-axis.

ψR(x⃗R) = ψR(x⃗) + ∂ψR(x⃗)
∂ϕ

δϕ =
(

1 + δϕ
∂

∂ϕ

)
ψR(x⃗)

As earlier, we can show now that

ψR(x⃗) =
(

1 − δϕ
∂

∂ϕ

)
ψR(x⃗R) =

(
1 − δϕ

∂

∂ϕ

)
ψ(x⃗)

where we have
(a) neglected terms of O(δ2) and
(b) used rotational invariance (i.e. ψ(x⃗) = ψR(x⃗R))
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Rotational Symmetry
Looking at

ψR(x⃗) =
(

1 − δϕ
∂

∂ϕ

)
ψ(x⃗)

we get
Uz(δϕ) =

(
1 − δϕ

∂

∂ϕ

)

Comparing to Û = eiϵF = (1 + iϵF̂ ),
we can say ϵ = δϕ and F̂ = i∂/∂ϕ.
Of course, the eigenfunctions and eigenvalues of F̂ are known...

F̂ = − L̂z
h̄
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Angular momentum review
Classically, angular momentum is L⃗ = r⃗ × mv⃗ . In QM,
(a)L is quantized (b)Can’t measure all 3 components at same time.

Typically we measure L2 = L⃗ · L⃗, and the z-component Lz .

L2 : ℓ(ℓ+ 1)h̄2 where ℓ = 0, 1, 2, 3, ...
Lz : mℓh̄ where mℓ = −ℓ, ..., ℓ in integer steps

Similarly, for spin angular momentum S⃗ we have

S2 : s(s + 1)h̄2 where s = 0, 1
2 , 1,

3
2 , 2, ...

Sz : ms h̄ where ms = −s, ..., s in integer steps

Fundamental particles have fixed spin.
Composite particles in addition have L, and several L states are
possible. Thus electrons, protons have s = 1

2 , pions or kaons have
s = 0, and photons or gluons have s = 1.
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Addition of Angular momentum
Let us denote angular momentum states as follows:
|ℓ,mℓ⟩ or |s,ms⟩.
The total angular momentum, in situations where say orbital and
spin angular momenta get coupled is obtained by J = L + S.

Suppose we have two states |j1,m1⟩, and |j2,m2⟩, the sum of them
will be denoted as |j ,m⟩.
In a straightforward way, we will have m = m1 + m2

The j will take values as j = (j1 + j2), ..., |j1 − j2| in integer steps.
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Addition of Angular momentum
Thus if the states are |1, 0⟩ and |1

2 ,
1
2⟩,

then m =½, and j can take two values, 1+½ and 1−½
j = 3

2 ,
1
2 .

Thus we can get two states, |3
2 ,

1
2⟩ and |1

2 ,
1
2⟩ from the addition of

|1, 0⟩ and |1
2 ,

1
2⟩

We write this as

|1, 0⟩|1
2 ,

1
2⟩ = α|3

2 ,
1
2⟩ + β|1

2 ,
1
2⟩

with the ability to calculate α and β.
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Addition of Angular momentum
In general

|j1,m1⟩|j2,m2⟩ =
j1+j2∑

j=|j1−j2|

C j
m

j1
m1

j2
m2|j ,m⟩

Here the C ’s are Clebsch-Gordon coefficients, and we can look them up
in a table.

Google clebsch site:pdg.lbl.gov/2024/, (pdf) is on our website.
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Addition of Angular momentum

|1, 0⟩|1
2 ,

1
2⟩ = α|3

2 ,
1
2⟩ + β|1

2 ,
1
2⟩

Here we are adding j1 = 1 and j2 =½, so look for the 1 × 1/2 table.

Here m1 = 0 and m2 =½, so look
for the row corresponding to 0, 1/2.
This gives two numbers
2/3 and −1/3

Remember to take the square root and we can write

|1, 0⟩|1
2 ,

1
2⟩ =

√
2
3 |3

2 ,
1
2⟩ −

√
1
3 |1

2 ,
1
2⟩
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Addition of Angular momentum: another example

|1, 1⟩|1
2 ,−

1
2⟩ = α|3

2 ,
1
2⟩ + β|1

2 ,
1
2⟩

Here we are adding j1 = 1 and j2 =½, so look for the 1 × 1/2 table.

Here m1 = 1 and m2 = −½, so look
for the row corresponding to
1,−1/2.
This gives two numbers
1/3 and 2/3

Remember to take the square root and we can write

|1, 1⟩|1
2 ,−

1
2⟩ =

√
1
3 |3

2 ,
1
2⟩ +

√
2
3 |1

2 ,
1
2⟩
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Addition of Angular momentum: and one more

|2,−1⟩|1
2 ,

1
2⟩ = α|5

2 ,−
1
2⟩ + β|3

2 ,−
1
2⟩

Here we are adding j1 = 2 and j2 =½, so look for the 2 × 1/2 table.

Here m1 = −1 and m2 =½, so look
for the row corresponding to
−1, 1/2.
This gives two numbers
2/5 and −3/5

Remember to take the square root and we can write

|2,−1⟩|1
2 ,

1
2⟩ =

√
2
5 |5

2 ,−
1
2⟩ −

√
3
5 |3

2 ,−
1
2⟩
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Addition of Angular momentum
A quark and an antiquark are bound together, in a state with orbital
momentum L = 0, to form a meson.

Quarks carry spin ½, so we have 2 spin ½ particles.
The possible values of j are j = 0, 1
and m = 0 or m = −1, 0, 1 depending on the j value.

|1
2 ,

1
2⟩|1

2 ,
1
2⟩ = |1, 1⟩

|1
2 ,

1
2⟩|1

2 ,−
1
2⟩ = 1√

2
|1, 0⟩ + 1√

2
|0, 0⟩

|1
2 ,−

1
2⟩|1

2 ,
1
2⟩ = 1√

2
|1, 0⟩ − 1√

2
|0, 0⟩

|1
2 ,−

1
2⟩|1

2 ,−
1
2⟩ = |1,−1⟩
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Addition of Angular momentum
A quark and an antiquark are bound together, in a state with orbital
momentum L = 0, to form a meson.

Inverting..

|1, 1⟩ = |1
2 ,

1
2⟩|1

2 ,
1
2⟩

|1, 0⟩ = 1√
2

|1
2 ,

1
2⟩|1

2 ,−
1
2⟩ + 1√

2
|1
2 ,−

1
2⟩|1

2 ,
1
2⟩

|1,−1⟩ = |1
2 ,−

1
2⟩|1

2 ,−
1
2⟩

|0, 0⟩ = 1√
2

|1
2 ,

1
2⟩|1

2 ,−
1
2⟩ − 1√

2
|1
2 ,−

1
2⟩|1

2 ,
1
2⟩

We observe uū bound states. (In practice it is a uū−dd̄√
2 bound state)

When J = 0 it is a π0 meson (mπ0 = 135 MeV),
whereas in a J = 1 bound state, it is a ρ0 meson (mρ0 = 775 MeV).

(In practice this is more complicated).

25 / 36



Addition of Angular momentum
A quark and an antiquark are bound together, in a state with orbital
momentum L = 0, to form a meson.

Inverting..

|1, 1⟩ = |1
2 ,

1
2⟩|1

2 ,
1
2⟩

|1, 0⟩ = 1√
2

|1
2 ,

1
2⟩|1

2 ,−
1
2⟩ + 1√

2
|1
2 ,−

1
2⟩|1

2 ,
1
2⟩

|1,−1⟩ = |1
2 ,−

1
2⟩|1

2 ,−
1
2⟩

|0, 0⟩ = 1√
2

|1
2 ,

1
2⟩|1

2 ,−
1
2⟩ − 1√

2
|1
2 ,−

1
2⟩|1

2 ,
1
2⟩
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Addition of Angular momentum

Now say we have three quarks bound together, with say L = 0, to
form a baryon.

Thus j = 3
2 ,

1
2 .

The baryon can have spin of 3
2 , or it can have spin of ½ in two ways

(i)first two add to 1 and we subtract ½ or
(ii)first two add to 0 and we add ½.

We have the 3
2 give the baryon decuplet, and one 1

2 give the baryon
octet, and in the quark model, we can have another family with
s = 1

2 .
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Addition of Angular momentum
A quick point to note.

Its important to note the number of states before and after, and see that
they match up.
If we add two spin ½ particles, the number of states before and after are
four.
▶ | 1

2 ,− 1
2⟩| 1

2 ,− 1
2⟩

▶ | 1
2 ,

1
2⟩| 1

2 ,− 1
2⟩

▶ | 1
2 ,− 1

2⟩| 1
2 ,

1
2⟩

▶ | 1
2 ,

1
2⟩| 1

2 ,
1
2⟩

▶ |1, 1⟩
▶ |1, 0⟩
▶ |1,−1⟩
▶ |0, 0⟩

One should check this when adding angular momenta.
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Addition of Angular momentum
Consider the original beta-decay reaction, n → p + e. Does this satisfy
conservation of angular momentum?

No. All of these particles have spin ½.
Given the reaction is n → p + e + ν̄e , what spin can the neutrino have?
So we have on the left |j = 1

2 ,m1⟩n for the neutron.
On the right we have |j1 = 1

2 ,m2⟩p|j2 = 1
2 ,m3⟩e|S,m4⟩ν

We need j1 =½, j2 =½, and S to “add” to give us j =½. (i.e.
j = j1 + j2 + S)
j ′ = j1 + j2 can take values 1, or 0.

This means that S has to take value of either 1
2 or 3

2 , such that when we
do j = j ′ + S, we will be able to get j =½.
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Spin Angular momentum and Spinors

Spin and the corresponding formalism is fairly important and useful.
We can write a spin-up (↑) state as |½,½⟩ and a spin-down (↓) as |½,-½⟩
We can instead also define the two states (↑ and ↓), by using
two-component column vectors.

|½,½⟩ =
(

1
0

)
|½,-½⟩ =

(
0
1

)
These are called as spinors.

Typically the most general state of a spin- 1
2 particle is(

α
β

)
= α

(
1
0

)
+ β

(
0
1

)
with |α|2+|β|2= 1 being the normalization condition.
Obviously, these form a basis in this spin-space.
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Spin Angular momentum and Spinors

We have Ŝz |½,±½⟩ = h̄
2 |½,±½⟩

For the spinor notation, we define

Ŝz = h̄
2

(
1 0
0 −1

)
This naturally gives us

Ŝz

(
1
0

)
= h̄

2

(
1
0

)
Ŝz

(
0
1

)
= − h̄

2

(
0
1

)
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Spin Angular momentum

We define the Pauli spin matrices as

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

and define the components of spin as Ŝ =
(

h̄
2

)
σ.

Thus Ŝx = h̄
2

(
0 1
1 0

)
= h̄

2σx .

The eigenvalues of Ŝx are ± h̄
2 and the eigenvectors are

χ+ =
(

1/
√

2
1/

√
2

)
χ− =

(
1/

√
2

−1/
√

2

)

These also form a basis.
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Spin Angular momentum

Suppose an electron is in the state
(

1√
5

2√
5

)
If we measured Ŝx , Ŝy , or Ŝz what values will we get, with what
probabilities?

The eigenvectors of Ŝz are ( 1
0 ) and ( 0

1 ), and thus(
1√
5

2√
5

)
= 1√

5

(
1
0

)
+ 2√

5

(
0
1

)

Thus if we measure Ŝz , we will get h̄/2 with probability 1/5 and −h̄/2
with probability 4/5.
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Spin Angular momentum

Suppose an electron is in the state
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1√
5

2√
5

)
If we measured Ŝx , Ŝy , or Ŝz what values will we get, with what
probabilities?

The eigenvectors of Ŝx are
(

1/
√

2
1/

√
2

)
and

(
1/

√
2

−1/
√

2

)
,

and thus(
1√
5

2√
5

)
= 3√

10

(
1/

√
2

1/
√

2

)
− 1√

10

(
1/

√
2

−1/
√

2

)

Thus if we measure Ŝx , we will get h̄/2 with probability 9/10 and −h̄/2
with probability 1/10.
HW: find the eigenvectors of Ŝy , and find the corresponding probabilities.
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HW: find the eigenvectors of Ŝy , and find the corresponding probabilities.

33 / 36



Spin Angular momentum

Suppose an electron is in the state
(

1√
5

2√
5

)
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1√
5

2√
5

)
= 3√

10

(
1/

√
2

1/
√

2

)
− 1√

10

(
1/

√
2

−1/
√

2

)

Thus if we measure Ŝx , we will get h̄/2 with probability 9/10 and −h̄/2
with probability 1/10.
HW: find the eigenvectors of Ŝy , and find the corresponding probabilities.
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Spin Angular momentum

Some useful properties of the Pauli spin matrices are

σiσj = δij + iϵijkσk

where δij is the Kronecker delta, and ϵijk is the Levi–Civita symbol.

The commutation relations are

[σi , σj ] = 2iϵijkσk

{σi , σj} = 2δij

Also, for any two vectors a and b,

(σ · a)(σ · b) = a · b + iσ · (a × b)
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Rotating spinors

A spinor transforms as follows when we rotate the coordinate axes(
α′

β′

)
= U(θ)

(
α
β

)
where U(θ) = e−i(θ·σ)/2

The vector θ points along the axis of rotation, and its magnitude is
the angle of rotation about that axis.

So for a rotation around Z axis by angle δ, the operator would be

U(δ) = exp(−iδσz
2 )

And for a general wave function, the operator would be

U(θ) = e−i(θ·J)/h̄
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Angular momentum
Let us rewrite the operator as

U(θ) = exp(−iθ · J
h̄ ) = exp(−iδn̂ · J

h̄ ) = Un(δ)

where δ is the magnitude of the rotation, and n̂ is a unit vector along the
axis of rotation.

If the system is invariant under rotation about n̂, then the component of
angular momentum along n̂ is conserved.
Thus [H,Un] = 0 −→ [H, n̂ · J ] = 0.

Now we note one thing: If a Hamiltonian is H = H0 + Hmag .
If H0 is isotropic, then we will have [H0, J ] = 0, but
[H, J ] = [H0 + Hmag , J ] ̸= 0. The symmetry is broken.
Of course, the component of J along the magnetic field will still be
conserved.
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