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Symmetries

» Physical laws invariant under some symmetry = Conservation
principle

» Time=Energy, Rotation=2Angular momentum
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Symmetries

» Physical laws invariant under some symmetry = Conservation
principle

» Time=Energy, Rotation=2Angular momentum

» Some symmetries are perfect (conservation laws hold exactly),
some are broken (laws hold approximately).

> We aim to study angular momentum, discrete symmetries and
so on. Let us first consider some additive quantum numbers
like charge, and see some formalism.
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Transformation

» Consider system described by time-indep H, where v satisfies
Schrodinger equation

nd¥

B = Hy (1)

> If F is an operator, then the observable F in state v(t) is
given by (F).
> (F) is conserved if

[HF]f0:>j<I:'> 0 (2)
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How can we find conserved quantities? Check [H, F] for all F!
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Transformation

How can we find conserved quantities? Check [H, F] for all F!
or exploit symmetry.
» Consider a transformation operator U.

¢/(X7 t) = U¢(X7 t)

U is unitary (UTU = I) to preserve normalization.

» If ¢/’ satisfies same Schrodinger equation, U is a symmetry
operator.

> We have

d, _dy
i (Uv) = H(Uy) = ih - = U™ HUY

S H=UHU = U'HU = [H,U] =0
> The symmetry operator commutes with the Hamiltonian.
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Transformation

» Comparing [H, F] = 0 and [H, U] = 0, we can say that if U is
hermitian, it will be an observable and will be conserved.
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Transformation

» Comparing [H, F] = 0 and [H, U] = 0, we can say that if U is
hermitian, it will be an observable and will be conserved.

» Transformations can be continuous (rotation) or
non-continuous (parity).

» For continuous transformations we can write
U= ei€F

where F is the generator of the transformation, and € is a real
parameter.
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Transformation

> So Uy = eiFop = (1+ ieF + UL 4.y
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Transformation

> So Uy = e Fip = (1 + ieF + —(’j)z )
» Since U is unitary for symmetry operations, F is hermitian.
> UTU =1= exp(—ieFM)exp(ieF) = explie(FT — F)] =1
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Transformation

So Uy = efFyp = (14 ieF + UL 4.y

Since U is unitary for symmetry operations, F is hermitian.
UTU =1 = exp(—ieF)exp(ieF) = explie(FT — F)] =1
Considering infinitesimally small transformations,

U= (1+ieF),eF < 1,

and that [H, U] =0,

we can show that [H, F] = 0.

vVvYyy
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Transformation

So Uy = efFyp = (14 ieF + UL 4.y

Since U is unitary for symmetry operations, F is hermitian.
UTU =1 = exp(—ieF)exp(ieF) = explie(FT — F)] =1
Considering infinitesimally small transformations,

U= (1+ieF),eF < 1,

and that [H, U] =0,

we can show that [H, F] = 0.

» If U is not hermitian, then F is the corresponding observable.

vVvYyy
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Transformation

vVvYyy

So Uy = efFyp = (14 ieF + UL 4.y

Since U is unitary for symmetry operations, F is hermitian.
UTU =1 = exp(—ieF)exp(ieF) = explie(FT — F)] =1
Considering infinitesimally small transformations,

U= (1+ieF),eF < 1,

and that [H, U] =0,

we can show that [H, F] = 0.

If U is not hermitian, then F is the corresponding observable.

Invariance under continuous transform = Additive
conservation law.

Invariance under noncontinuous transform = Multiplicative
conservation law.
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Translation
Let ¢'(x) = U(A)Y(x) (A displacement along x). If system is

invariant under translation, then v and 1)/ both satisfy the
Schrodinger equation, and [H, U] = 0.
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Translation

Let ¢'(x) = U(A)Y(x) (A displacement along x). If system is
invariant under translation, then v and 1)/ both satisfy the
Schrodinger equation, and [H, U] = 0.

» System is invariant = ¢/(x + A) = ¥(x)

» For small A

d

v =)+ a-aral

'
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Translation

Let ¢'(x) = U(A)Y(x) (A displacement along x). If system is

invariant under translation, then v and 1)/ both satisfy the
Schrodinger equation, and [H, U] = 0.

» System is invariant = ¢/(x + A) = ¥(x)

» For small A

)=V + Ton =+ a
d d d.
= (1- Aa)ﬂj =(1- A&)(l + AE)UJ
d ,
(-2 )=

ignoring terms of O(A?) in the last step.
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Translation
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Translation

> Thus U(A) ~ (1 - AZ).

» Generator proportional to linear momentum operator ;-4

a .
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Translation

> Thus U(A) ~ (1 - AZ).

» Generator proportional to linear momentum operator ;-4

a .

» Invariance under translation — conservation of momentum.
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Translation

A2 A A /

v

d
Thus U(A) ~ (1 — A&)-
Generator proportional to linear momentum operator idi’X.
Invariance under translation — conservation of momentum.

Similarly we can show invariance under a local gauge
transformation — conservation of charge.

A local gauge transformation is ¢/ = e’ “(%:t)Q where € is
real and arbitrary, and Q is charge operator with [H, Q] = 0.
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Charge conservation

» Absence of e — v~y implies electric charge is conserved.

» Total charge conserved in a reaction, so if
at+b—c+d+e, then N+ Np = No + Ny + Ne
where charge of a particle g = Ne (an integral multiple of e).

P This is an additive conservation law. What is the symmetry
principle?
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Charge conservation

» Say, 1) described a state with charge g, and satisfies

nd¥

=H
dt 4

» If Q is the charge operator, then (Q) is conserved
and [Q, H] = 0 and thus Q and H have simultaneous
eigenfunctions

QY = qy
and the eigenvalue g is also conserved.

» Here a gauge transformation is the symmetry
w/ — eIGQw

where € is real and arbitrary.
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Charge conservation

We'll now illustrate that g is electric charge using local gauge
invariance.
> Let g be electric charge, and say there is a static E-field with
E= —VAO, where A is the scalar potential (A is the vector
potential).
» We have H = Hy + gAp, where Hy is the Hamiltonian when
E-field is absent.
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Charge conservation

We'll now illustrate that g is electric charge using local gauge
invariance.

> Let g be electric charge, and say there is a static E-field with
E= —VAO, where A is the scalar potential (A is the vector
potential).

» We have H = Hy + gAp, where Hy is the Hamiltonian when
E-field is absent.

» For free particle, Hy = p?/2m = —7'72V2/2m
» The E, B fields are unchanged by gauge transformations

Ay — Ay, and A — A
» If A(X,t) is an arbitrary function of position and time,

10
Ay =Ag — —=—N\(X
0 0 c ot (X7t)

A = A+ VAR, t)
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Charge conservation

A local gauge transformation is ¢/ = e/€(X:t)Qq).
> Let us take A(t),€(t) to simplify algebra (no X dependence).
» Impose invariance under local gauge transformation
Q)[)/

8t = (Ho + gAY
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Charge conservation

A local gauge transformation is ¢/ = e/€(X:t)Qq).
> Let us take A(t),€(t) to simplify algebra (no X dependence).
» Impose invariance under local gauge transformation
?Z)’ /
H A
g = (Ho + aAg)y/

Put in Aj and ¢/

o, —T)2 q ON .
Y (pie()Q )y — | T 2 _qdn ie(t)Q

Iﬁ@t(e ¥) ( 2m Vit at c 8t> ¢ v

&p —H? q oA

ie(t)Q — IE(t)Q R v 2 _4yn
( ot —hQvg; ) <2mv + 94 c8t>¢

This gives
de  qON(t)
"5t = ¢ ot
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Charge conservation

de  qON(t)
hQg = o

Since €(t) and A(t) are arbitrary functions of space/time, say
A(t) = hce(t)

Together this gives us QY = q1).

As phase of the wavefunction varies as €(X, t), the variation is
counteracted by corresponding changes in EM potential given by
A(X, t) = hce(X, t).
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Rotational Symmetry

Consider an experiment setup in the X-Y plane, described by wave
function ¥ (X).
Let us perform a rotation around the Z axis, by an angle ¢.
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function ¥ (X).
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rotation by ¢ around the z axis. The rotated wave function can be
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Rotational Symmetry

Consider an experiment setup in the X-Y plane, described by wave
function ¥ (X).

Let us perform a rotation around the Z axis, by an angle ¢.

This rotation can be written as X% = R,(¢)X (R,(¢) denotes
rotation by ¢ around the z axis. The rotated wave function can be
written as

VR(X) = Uz(0)9(X)

Now let us say the system is invariant under rotation. This implies

PR(xF) = ()
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Rotational Symmetry

Consider an experiment setup in the X-Y plane, described by wave
function ¥ (X).

Let us perform a rotation around the Z axis, by an angle ¢.

This rotation can be written as X% = R,(¢)X (R,(¢) denotes
rotation by ¢ around the z axis. The rotated wave function can be
written as

VR(X) = Uz(0)9(X)

Now let us say the system is invariant under rotation. This implies
R(2R >
PT(XT) = P(X)

We now need to express 1)X(xR) in terms of ¥R (X).
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Rotational Symmetry

We now need to express 1 (XR) in terms of ¥R (X).
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Rotational Symmetry

We now need to express ¢ (%) in terms of ¢R(X). Take an
infinitesimal rotation d¢ about Z-axis.

RizRY _ ,,R(z anR()_(’) _ 9 R(z
WA = 8 (R) + 25 00 = (1400 50 ) 0R(2)
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Rotational Symmetry

We now need to express ¢ (%) in terms of ¢R(X). Take an
infinitesimal rotation d¢ about Z-axis.

RizRY _ R)—(» awR()?) R)—(*
W) = 00) + 200 = (14800 ) R (R

As earlier, we can show now that
R _ R(gR _
u(R) = (1= d0 57 ) wR= = (1- 607 ) vix)

where we have
(a) neglected terms of O(§2) and
(b) used rotational invariance (i.e. ¥(X) = ¥R (xF))
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Rotational Symmetry

Looking at
W) = (10057 ) vix)

we get

Un(50) = (1 - 56 ¢)

16/36



Rotational Symmetry
Looking at
W) = (10057 ) vix)
we get

Un(50) = (1 - 56 ¢)

Comparing to U = e/F = (1 + ieF),
we can say € = 8¢ and F = i9/d¢.
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Rotational Symmetry
Looking at
W) = (10057 ) vix)

we get

Un(50) = (1 - 56 ¢)

Comparing to U = e'*F = (1 + ieF),

we can say € = 8¢ and F = i9/d¢.

Of course, the eigenfunctions and eigenvalues of F are known...

. L,

F=_Z
h
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Angular momentum review

Classically, angular momentum is [=7x mv. In QM,
(a)L is quantized (b)Can't measure all 3 components at same time.
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Angular momentum review

Classically, angular momentum is L = ¥ x mv. In QM,

(a)L is quantized (b)Can't measure all 3 components at same time.

Typically we measure L% = [-L, and the z-component L.

[2: (¢ +1)R* where £=0,1,2,3,...

L,: myh where my = —/,...,¢ in integer steps

Similarly, for spin angular momentum S we have
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S$?: s(s+1)A* where s =0, %, 1, 5,2,
S;: mgh where mg = —s,...,s in integer steps
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Angular momentum review

Classically, angular momentum is [=7x mv. In QM,
(a)L is quantized (b)Can't measure all 3 components at same time.

Typically we measure L% = [-L, and the z-component L.

[2: (¢ +1)R* where £=0,1,2,3,...

L,: myh where my = —/,...,¢ in integer steps

Similarly, for spin angular momentum S we have

3

S$?: s(s+1)A* where s =0, %, 1, 5,2,
S;: mgh where ms = —s,...,s in integer steps

Fundamental particles have fixed spin.
Composite particles in addition have L, and several L states are
possible. Thus electrons, protons have s = 1, pions or kaons have

s = 0, and photons or gluons have s = 1.
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Addition of Angular momentum

Let us denote angular momentum states as follows:

|¢, mg) or |s, ms).

The total angular momentum, in situations where say orbital and
spin angular momenta get coupled is obtained by J =L 4+ S.

18/36



Addition of Angular momentum

Let us denote angular momentum states as follows:
|¢, mg) or |s, ms).

The total angular momentum, in situations where say orbital and
spin angular momenta get coupled is obtained by J =L 4+ S.

Suppose we have two states |j1, m1), and |j2, my), the sum of them
will be denoted as |j, m).
In a straightforward way, we will have m = my + my

The j will take values as j = (j1 + j2), ..., |1 — jo| in integer steps.
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Addition of Angular momentum

Thus if the states are |1,0) and |3, 1),

then m =%, and j can take two values, 1+% and 1-%
i=33

Thus we can get two states, |3,1) and |, 1) from the addition of
1,0) and [3,3)

We write this as
11, 31 11
|1»0>|§a§>—0‘|§>§>+ﬁ|§7§>

with the ability to calculate o and S.
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Addition of Angular momentum

In general

Here the C's are Clebsch-Gordon coefficients, and we can look them up

Jiti2

ljlam1>|j27m2> = Z

==l

Jj JL 2
Cmml m2

/, m)

J,m

in a table.
1/2x1/2 ”—1 3 — ™M
/22172 1] 0 0 2x1/72|.25rma mq My | Coefficients
|+1/z —1/2[172 172] 1 - I x 2 +172]  1)-3/2+3/2 - .
172 +172172-172)-1 V= in ' 2172|175 475 572 372
~1/2-172] 1] o7 414172 | 4/5-1/5]+172 +1/2
1-172| 2/5 3/5| 572 372
0+1/2| 3¢5 -2/5|-1/2 172
37
1x1/2 B emmyn 5 0-1/2| 3/5 2/5| 572 372
T e1/241/2) V- —\/ésinocosos’o 1+1/2| 2/5-3/5|-3/2 -3/2
w1122 173 273 3/2 172] x I*' -lrz| 45 1/5] 5/2]
I 0+1/2| 2/3-1/3|-1/2-1/2| I, 3/23/21 /‘2/2 L 3 1 -2 +1/2] 1/5 -4/5]|-5/2|
22 s i 372+ e
o172 23 13 32| Y2 g\ gy e | Y2 |
1 172| 13-2/3|-3/2 32172114 34 2 1
25113 +1/2+1/2/3/4-174f 0 0|
ol Pt e Bzl o] 37241 s 7z el 2 1
2 41| 1| +2 +2] Sz 1|32 4372 —1/2+1/2)1/2-1/2) -1 1
=2 ofi3 23l 3 2 1 +3/2 0| 2/5 3/5| 5/2 3/2 172 -1/2-1/2| 3/4 1/4| 2
1423 /38) a1 4T +1/2 1] 3/5 —2/5[+1/2 +1/2 +172 -3/2 1172 2
211715 173 3/5 321110 2/5 172 |
+1 0[8/15 1/6-3/10[ 3 2 1 +1/2 0| 3/5 115 -1/3[ 572 372 1/2
T |o+1| 25122 1710 0 0 o0 ~1/241(3/10-8/15 _1/6|-1/2 -1/2 -1/2
I AR 1-1[1/5 1/2 3/10 +1/2-1/3/10 8/15 1
1oz 12[ 2 1 0 0035 0-2/5 3 2 1 ~1/2 0| 3/5-1/15 -1/3| 572 3/2
0+1)1/2-172| 0 0 0 “1+[i/5-1/2 3/10) -1 -1 -1 —3/241|1710_-2/5_1/2|-3/2 -3/2
+1-1[1/6 172 1/3] 0-1| 2/5 1/2 110 —172-1| 3/5 2/5| 572
0 0[23 o0-1/3l 2 1 -1 0[8/15-1/6-3/10 3 2 ~3/2 0] 2/5 -3/5|-5/2
“141[1/6-172 18] -1 1 21115173 3/5| -2 -2 372 7
T~ im vl s T <lam aml sl I__I

Google clebsch site:pdg.Ibl.gov/2024/, (pdf) is on our website.
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Addition of Angular momentum

11, 31 11
|1,0>|§a§>‘* a|§,§) +'ﬂ|§7§>

Here we are adding j1 = 1 and j» =%, so look for the 1 x 1/2 table.
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Addition of Angular momentum

11, 31 11
|1’0>|§a§>*a|§7§>+ﬁ|§a§>

Here we are adding j1 = 1 and j» =%, so look for the 1 x 1/2 table.

372 _ _1
1x1/2 R ey Here m; = 0 and m2—./2, so look
L1 e172]  1pszaaze for the row corresponding to 0,1/2.
w1 -1/2| 13 23| 32 12 o
0+1/2| 2/3-1/3|-1/2-1/2 This gives two numbers
0-1/2| 2/3 1/3] 3/2 —
|71 w172| 13-2/3|-3/2 2/3 and —1/3
3 -1-1/2| 1
2x1 .—l — |

Remember to take the square root and we can write
2 1
Lhy_ 23 Ly okl
|170>|§v§> - 3 |272> 3 2a2>
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Addition of Angular momentum: another example

1 1, 31 11
|1,1>|§7—§>fa|5,5>+5\§,§>

Here we are adding j1 = 1 and j, =%, so look for the 1 x 1/2 table.

3/2
X
1x1/2 +3/2) 3/2 1/2

[+1 +1/2] 11/2 172
+1-1/2| 1/3 2/3] 3/2 1/2
0+1/2| 2/3 -1/3|-1/2-1/2

0-1/2| 2/3 1/3]| 3/2
-1+1/2| 1/3-2/3]-3/2

3 -1-1/2| 1
Zx1.—| — |
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Addition of Angular momentum: another example

1 1, 31 11
|1,1>|§v_§>*a|§,§>+5‘§a§>

Here we are adding j1 = 1 and j, =%, so look for the 1 x 1/2 table.

7% Here m; =1 and mp = —%, so look
VX172 | a7 for th di
72 sz 1se or the row corresponding to
1172 173 23] 32 172 1,-1/2.
0+1/2| 2/3 -1/3|]-1/2-1/2

i 2 1A This gives two numbers
-1+1/2) 1/3-2/3|-3/2 1/3 and 2/3

3 -1-1/2| 1
2x1.—| — |

Remember to take the square root and we can write

1 1, 1,31 2,11
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Addition of Angular momentum: and one more

11, 5 _1 § _1
|2a_1>|§7§>*a‘§a 2>+ﬂ‘2a 2>

Here we are adding j1 = 2 and j, =%, so look for the 2 x 1/2 table.

572
2x1/2). 53

[2w172]  1]+3/2+3/2

+2-1/2| 1/5 4/5| 5/2 3/2
+1+1/2| 4/5-1/5|+1/2 +1/2

+1-1/2| 2/5 3/5| 5/2 3/2
0+1/2| 3/5-2/5|-1/2-1/2

0-1/2| 3/5 2/5| 5/2 3/2
-1+1/2| 2/5-3/5|-3/2 -3/2

-1-1/2| 4/5 1/5| 5/2
-2 +1/2| 1/5 -4/5|-5/2

[2-172]
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Addition of Angular momentum: and one more

‘ 5 1

11, 1 §_1
|2a_1>|§7§>*a§a 2>+5‘2a 2>

Here we are adding j1 = 2 and j, =%, so look for the 2 x 1/2 table.

2x1/2[ 72 Here m; = —1 and mp =%, so look
+5/2| 5/2 3/2 .
ZO7al 32432 for the row corresponding to
% RS -1,1/2.
1-1/2| 2/5 3/5| 5/2 3/2 . -
“oviv2| 35 28| -1r2 12 This gives two numbers

0-1/2| 3/5 2/5| 5/2 3/2
-1+1/2| 2/5-3/5|-3/2-3/2 2/5 and —3/5
S1-1/2] 4/5 1/5[ 572

—2+1/2| 1/5 -4/5|-5/2

[-2-172]

Remember to take the square root and we can write

11 25 1 3,3 1
‘27—1>‘§7§>: g|§7—§>_ g|§a—§>
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Addition of Angular momentum

A quark and an antiquark are bound together, in a state with orbital
momentum L = 0, to form a meson.
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Addition of Angular momentum

A quark and an antiquark are bound together, in a state with orbital
momentum L = 0, to form a meson.

Quarks carry spin %, so we have 2 spin % particles.
The possible values of j are j = 0,1
and m=0or m= —1,0,1 depending on the j value.
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Addition of Angular momentum

A quark and an antiquark are bound together, in a state with orbital
momentum L = 0, to form a meson.

Quarks carry spin %, so we have 2 spin % particles.
The possible values of j are j = 0,1

and m=0or m= —1,0,1 depending on the j value.
11,11
— |§7§>|§7§> =11,1)
1/2x1/2]| ! 1 1
[F7za7z &l o o |%,%>|%7—%>=7|1,0>+7|0,0>
1 2 Lo
172 + —1/2- 1 1,11
[Z172-172) 1 15 =505 3) = 7|1a0> - \76|070>
1 1,1 1
Ea _§> 57_§> - |17_1>
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Addition of Angular momentum

A quark and an antiquark are bound together, in a state with orbital
momentum L = 0, to form a meson.

Inverting..

1 1,11
|171> - |§a §>|§,§>

1] 1 11,1 1 11 1,11
1
1/2X1/2 +1 1 0 |1 O> \f|2 2>|27_7> ﬁ 57_§>|§7§>
ls172+172] 1] o o L
172 —1/2[1/2 1/2| 1 —1) = _z
j1/2 +1/2(1/2-1/2]-1 |1 1> | >|2’ 2>
—1/2-1/2| 1

1 11,1 1 1 1 1,11
.00 = Z515 3153 — 51335 3)

We observe uti bound states. (In practice it is a ””\;Edd bound state)

When J =0 it is a 70 meson (mo = 135 MeV),
whereas in a J = 1 bound state, it is a p® meson (m, = 775 MeV).
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Addition of Angular momentum

A quark and an antiquark are bound together, in a state with orbital
momentum L = 0, to form a meson.

Inverting..

1 1,11
|171> - |§a §>|§,§>

1] 1 11,1 1 11 1,11
1
1/2X1/2 +1 1 0 |1 O> \f|2 2>|27_7> ﬁ 57_§>|§7§>
ls172+172] 1] o o L
172 —1/2)1/2 1/2[ 1 —1) = _z
j1/2 +1/2(1/2-1/2]-1 |1 1> | >|2’ 2>
—1/2-1/2| 1

I 111 1 11 111
0.0 = 215 305 =3~ 513 DI3 D
We observe uti bound states. (In practice it is a ””\;Edd bound state)
When J =0 it is a 70 meson (mo = 135 MeV),
whereas in a J = 1 bound state, it is a p® meson (m, = 775 MeV).

(In practice this is more complicated).
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Addition of Angular momentum

Now say we have three quarks bound together, with say L =0, to
form a baryon.

Thus j = 3,1

The baryon can have spin of 2, or it can have spin of % in two ways
(i)first two add to 1 and we subtract % or

(ii)first two add to 0 and we add %.

We have the 3 give the baryon decuplet, and one 1 give the baryon
octet, and in the quark model, we can have another family with

— 1
s =1
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Addition of Angular momentum

A quick point to note.

Its important to note the number of states before and after, and see that
they match up.

If we add two spin % particles, the number of states before and after are

four.

> 35—l —1) > [1,1)
>[5 D5 -1 > [1,0)
>[5 -251) > [1,-1)
> 5005 %) > 10,0)

One should check this when adding angular momenta.
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Addition of Angular momentum

Consider the original beta-decay reaction, n — p + e. Does this satisfy
conservation of angular momentum?
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Addition of Angular momentum

Consider the original beta-decay reaction, n — p + e. Does this satisfy
conservation of angular momentum?

No. All of these particles have spin %.
Given the reaction is n — p + e + e, what spin can the neutrino have?

So we have on the left |j = 1, my), for the neutron.
On the right we have |j1 = 3, m)pljo = 3, m3)e|S, ma),
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Addition of Angular momentum

Consider the original beta-decay reaction, n — p + e. Does this satisfy
conservation of angular momentum?

No. All of these particles have spin %.
Given the reaction is n — p + e + e, what spin can the neutrino have?

So we have on the left |j = 1, my), for the neutron.

On the right we have |j1 = 3, m)pljo = 3, m3)e|S, ma),

We need j; =%, jo =%, and S to “add” to give us j =%. (i.e.
i=i+p+S)

j' = j1 + jo can take values 1, or 0.
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Addition of Angular momentum

Consider the original beta-decay reaction, n — p + e. Does this satisfy
conservation of angular momentum?

No. All of these particles have spin %.
Given the reaction is n — p + e + e, what spin can the neutrino have?

So we have on the left |j = 1, my), for the neutron.
On the right we have |j1 = 3, m)pljo = 3, m3)e|S, ma),

We need j; =%, jo =%, and S to “add” to give us j =%. (i.e.
j=ha+h+S)

j' = j1 + jo can take values 1, or 0.

This means that S has to take value of either J or 2, such that when we
doj =,/ + S, we will be able to get j =%.
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Spin Angular momentum and Spinors

Spin and the corresponding formalism is fairly important and useful.
We can write a spin-up (1) state as |%,%) and a spin-down (|) as |%,-%)

We can instead also define the two states (1 and |), by using
two-component column vectors.

wo=() o=

These are called as spinors.
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Spin Angular momentum and Spinors

Spin and the corresponding formalism is fairly important and useful.
We can write a spin-up (1) state as |%,%) and a spin-down (|) as |%,-%)

We can instead also define the two states (1 and |), by using
two-component column vectors.

() o )

These are called as spinors.

Typically the most general state of a spin-} particle is

o 1 0
(3)=(c) ++C)
with |a|?+|B|?>= 1 being the normalization condition.

Obviously, these form a basis in this spin-space.
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Spin Angular momentum and Spinors
. A
We have 5, |%,+%) = §|1/2,i1/2>

For the spinor notation, we define

This naturally gives us
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Spin Angular momentum

We define the Pauli spin matrices as

(01 (o —i (1 0
9%=\1 0) % \i o) 270 -1

and define the components of spin as S = (g) .
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Spin Angular momentum
We define the Pauli spin matrices as

(01 (o —i (1 0
9%=\1 0) % \i o) 270 -1

and define the components of spin as S = (g) .

Thus 5, =1 <(1’ é) = o,

The eigenvalues of Sy are ig and the eigenvectors are

1/\@ 1/\6
X+ = l/ﬁ X-= —l/ﬁ
lhese also form a basis.
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Spin Angular momentum

1
Suppose an electron is in the state (‘f)
V5

If we measured SX, gy, or §z what values will we get, with what
probabilities?
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Spin Angular momentum

1
Suppose an electron is in the state (‘f)
V3

If we measured SX, gy, or 32 what values will we get, with what
probabilities?

The eigenvectors of S, are (}) and (9), and thus

1

9-50+50

Z /5 \0 V5 \1
Thus if we measure S, we will get /2 with probability 1/5 and —h/2
with probability 4/5.
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Spin Angular momentum

1
Suppose an electron is in the state (“25)
v

If we measured SX, Sy, or S”Z what values will we get, with what
probabilities?

The eigenvectors of S, are (i;g) and (_11//\/\/2)
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Spin Angular momentum

1
Suppose an electron is in the state (“25)
v

If we measured SX, Sy, or S”Z what values will we get, with what
probabilities?

The eigenvectors of :§X are (i;g) and (_11//‘65) and thus

AN (1/\@) 1 (1/\@)

Bl == o

2 )= Vo \ive) T Vi \-1vz
Thus if we measure S, we will get fi/2 with probability 9/10 and —/2
with probability 1/10.
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Spin Angular momentum

1
Suppose an electron is in the state (“25)
v

If we measured SX, Sy, or S”Z what values will we get, with what
probabilities?

The eigenvectors of :GX are (i;g) and (_11//‘65) and thus

AN <1/\@) 1 (1/\@)

Bl == o

2 )= Vo \ive) T Vi \-1vz
Thus if we measure S, we will get fi/2 with probability 9/10 and —/2
with probability 1/10.

HW: find the eigenvectors of Sy, and find the corresponding probabilities.
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Spin Angular momentum

Some useful properties of the Pauli spin matrices are
oioj = 0jj + i€jok
where §;; is the Kronecker delta, and ¢y is the Levi—Civita symbol.
The commutation relations are
[oi, 07] = 2iejok
{oi,0;} =245
Also, for any two vectors a and b,

(c-a)(c-b)=a-b+ioc-(axb)
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Rotating spinors

A spinor transforms as follows when we rotate the coordinate axes

o) _ ) where = ¢ /(00)/
(&) = vor () where veo :

The vector 6 points along the axis of rotation, and its magnitude is
the angle of rotation about that axis.
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Rotating spinors

A spinor transforms as follows when we rotate the coordinate axes

o) _ ) where — ¢ i(00)/
( 5’) = U(h) ( /3) here U(6) 2

The vector 6 points along the axis of rotation, and its magnitude is
the angle of rotation about that axis.
So for a rotation around Z axis by angle J, the operator would be

And for a general wave function, the operator would be

U(Q) _ e—i(0~J)/T7
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Angular momentum
Let us rewrite the operator as

U(6) = exp(~27) = e — 1, (9)

where § is the magnitude of the rotation, and 7 is a unit vector along the
axis of rotation.
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Angular momentum
Let us rewrite the operator as

—if-J. bk J
f

where § is the magnitude of the rotation, and 7 is a unit vector along the
axis of rotation.

If the system is invariant under rotation about 7, then the component of

angular momentum along f is conserved.
Thus [H,U,]=0— [H,n-J] =0.
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Angular momentum
Let us rewrite the operator as

—if-J. bk J
f

where § is the magnitude of the rotation, and 7 is a unit vector along the
axis of rotation.

If the system is invariant under rotation about 7, then the component of
angular momentum along f is conserved.
Thus [H,U,]=0— [H,n-J] =0.

Now we note one thing: If a Hamiltonian is H = Hy 4+ Hpag.
If Hy is isotropic, then we will have [Hp, J] = 0, but
[H,J] = [Ho + Hmag, J] # 0. The symmetry is broken.

Of course, the component of J along the magnetic field will still be
conserved.
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