PHY4154 NUCLEAR AND PARTICLE PHYSICS

Assignment 2

(1) Griffiths 1.3

Thinking of beta decay, one could have argued that the electrons are already present in the nucleus since they come out during beta decay. Use the position-momentum uncertainty relation, $\Delta x \Delta p \geq \hbar/2$, to estimate the minimum momentum of an electron confined to a nucleus. From the relativistic energy-momentum relation, $E^2 - p^2c^2 = m^2c^4$, determine the corresponding energy and compare it to that on an electron emitted in the beta decay of tritium ($\sim 5 \text{ keV}$).

(2) Griffiths 1.12/1.13

How many different meson combinations can you make with 1,2,3,4,5, or 6 different quark flavors. What is the general formula for n flavors?

How many different baryon combinations can you make with 1,2,3,4,5, or 6 different quark flavors. What is the general formula for n flavors?

- (3) Do the following processes/decays take place? If yes, draw Feynman diagrams showing the process/decay. If not, state why? (If a decay is merely kinematically forbidden, then draw its Feynman diagram too). The quark content of the hadrons shown here is $\eta(u\bar{u})$, $\pi^+(u\bar{d})$, $\pi^-(\bar{u}d)$, $\pi^0(d\bar{d})$, $D^+(c\bar{d})$, $\bar{K}^0(\bar{d}s)$. Use the web to find whichever masses you need, but try to find the source of that number (just as an exercise in referencing/citing).
 - (1) $\bar{t} \to W^- \bar{b}$
 - (2) $\eta \rightarrow \pi^+\pi^-\pi^0$
 - (3) $e^+e^- \rightarrow \nu_\mu \bar{\nu}_\mu$
 - (4) $D^+ \to \bar{K}^0 \mu^+ \bar{\nu}_{\mu}$
 - (5) $d\bar{d} \rightarrow \mu^+ \mu^- b\bar{b}$
 - (6) $\mu^+\mu^- \to \nu_\tau \bar{\nu}_\tau \gamma$
 - (7) $\Delta^0 \to p^+\pi^-$ (draw both strong and weak versions of this decay)
 - (8) $H^0 \rightarrow e^+ \nu_e b \bar{b}$
 - (9) $\pi^- \rightarrow \tau^- \bar{\nu}_{\tau}$
 - (10) $u\bar{d} \rightarrow e^+\nu_e\nu_\tau\bar{\nu}_\tau b\bar{b}$
- (4) Are either of these transitions possible? (as internal parts of an otherwise valid Feynman diagram)
 - (a) $s \to W^- u$ (b) $c \to W^+ d$

Which one is more likely?

What about these transitions? Which one is more likely?

(a)
$$b \to W^- u$$
 (b) $t \to W^+ d$