
PHY4154 NUCLEAR AND PARTICLE PHYSICS

Assignment 1
(1) Find the speed at which a meter stick is moving if its length is observed to shrink to 0.5 m.

Solution: Let L be the length of the meter stick in the stationary observer’s frame, and L′ = 1
m be the length of the meter stick in its own frame of reference (thus L′ is the proper length
of the meter stick). We know that moving objects appear to be contracted by a factor of γ, i.e.
L = L′/γ. Here, L = 0.5 m is given.

This gives us γ = L′/L = 2. Given that γ = 1/
√

1 − β2, we get β = 0.866, and thus
v = 0.866c.

(2) Two bodies of mass m, each with speed 3
5c, collide head on and stick together. What is the

mass of the final clump?

Solution: Let p⃗1 = p⃗ be the initial momentum of one body. Thus the other body has momentum
p⃗2 = −p⃗. Let p⃗M be the momentum of the final clump of mass M . Conservation of momentum
gives us p⃗1 + p⃗2 = 0 = p⃗M .

The initial energy of both clumps is E1 = E2 = γmc2. If EM = Mc2 is the energy of the final
clump, then conservation of energy gives us EM = 2E1. Thus Mc2 = 2γmc2, and M = 2γm.

γ = 1/

√
1 −

(
3
5

)2
= 5/4, and thus M = 5m/2.

(3) A body of rest mass m moving at speed v collides with and sticks to an identical body at rest.
What is the mass and momentum of the final clump?

Solution: The initial 4-momentum of the moving mass m is p1 = (γmc, γmv⃗). The initial
4-momentum of the stationary mass is p2 = (E/c, 0). p2 can be rewritten using E = mc2 as
(mc, 0). Note that p2

1 = p2
2 = m2c2, given that they are energy-momentum 4-vectors. Thus the

total initial 4-momentum is (adding components of vectors)
pi = p1 + p2 = ((γ + 1)mc, 0).
The final 4-momentum of the clump of mass M is pf = (Ef/c, p⃗).
We use conservation of energy-momentum before and after collision, and equate the invariants



before and after the collision to write p2
i = p2

f .

p2
f = M2c2 = p2

i

= (p1 + p2)2

= p2
1 + p2

2 + 2p1 · p2

= 2m2c2 + 2γm2c2

= 2m2c2(1 + γ)

This gives us M = m
√

2(1 + γ).

(4) A muon has a proper lifetime of 2.0 µs. It is created 100 km above the earth and moves towards
earth at 2.97 × 108 m/s. At what altitude does the muon decay? According to the muon, how
far did it travel in its life?

Solution: The proper lifetime of the muon (the average time for decay in its own frame) is
τµ = 2.0µs. For a stationary observer on earth, the muon lives for a lifetime of t = γτµ. In
this time, the muon travels a distance of d = vt = vγτµ. Thus d = 2.97×108×2×10−6

√
1−0.992 ≃ 4210 m.

Thus the muon travels 4.2 km before decaying, and decays at an altitude of 100 − 4.2 = 95.8
km. In its own frame, the muon travelled d/γ = vτµ = 594 m.

(5) The muon decays as µ → eν̄eνµ. If the number of muons at t = 0 is N0, the number N at time
t is N = N0e

−t/τ , where τ = 2.0 µs is the proper lifetime of the muon. Suppose the muons
move at speed 0.95c. What is the observed lifetime of the muons? How many muons remain
after traveling a distance of 3.0 km.

Solution: The observed lifetime of the muons is τ = γτµ. Given that β = 0.95c, thus γ =
3.202, and τ = 3.202 × 2 = 6.405 µs. This is the time constant to be used in the given decay
equation for N .

The time taken to travel 3.0 km is t = 3×103

0.95×3×108 = 10.53 µs.

The number at time t is

N(t = 10.53) = N0e
−t/τ = N0e

−10.53/6.405 = 0.193N0

(6) Show that the energy-momentum relationship E2 = p2c2 + m2c4 follows from the relations
E = γmc2, and p = γmv.

Solution:
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p = γmv

p2 = m2v2

1 − v2/c2

p2

m2c2 = v2/c2

1 − v2/c2

1 + p2

m2c2 = 1 + v2/c2

1 − v2/c2

1 + p2

m2c2 = γ2

E = γmc2

E2 = γ2m2c4

E2 =
(

1 + p2

m2c2

)
m2c4

E2 = m2c4 + p2c2

(7) A pion at rest decays to a muon and a neutrino. What is the speed of the muon? (You may
answer in terms of mπ, mµ etc.). On average how far will the muon travel (in vacuum) before
disintegrating? (Use mπ = 139.6 MeV/c2, mµ = 105.7 MeV/c2 to give an answer in metres.)

Solution: We know that p = γmv and E = γmc2. Thus p/E = v/c2 and v = pc2/E. If we
find the momentum and energy of the outgoing muon, we shall know its speed.

Let pπ, pµ, and pν be the 4-momenta of the π, µ and ν respectively. Since the pion is at rest
initially, we have pπ = (Eπ/c, 0). Let pµ = (Eµ/c, p⃗µ).

By conservation of momentum (initial=zero, so final=zero) the muon and neutrino emerge
with opposite momentum equal in magntitude, i.e. |p⃗µ| = |p⃗ν |.

The neutrino is massless, thus its energy Eν = |p⃗ν |c = |p⃗µ|c

Conservation of 4-momentum gives us pπ = pµ + pν .

pν = pπ − pµ

p2
ν = p2

π + p2
µ − 2pπpµ

0 = m2
πc2 + m2

µc2 − 2mπEµ

Eµ =

(
m2

π + m2
µ

)
c2

2mπ

pµ = pπ − pν

p2
µ = p2

π + p2
ν − 2pπpν

m2
µc2 = m2

πc2 + 0 − 2mπEν

m2
µc2 = m2

πc2 + 0 − 2mπ|p⃗µ|c

|p⃗µ| =

(
m2

π − m2
µ

)
c

2mπ

where I have used the following: pπpµ = Eπ

c
Eµ

c
− 0 = Eπ

c2 Eµ = mπEµ. (Note that the pion is
at rest, so all three p⃗π components are zero.) Similarly pπpν = mπEν .

Now v = pc2/E, thus

v =
m2

π − m2
µ

m2
π + m2

µ

c

This gives γ as

γ = 1√
1 − v2/c2

=
m2

π + m2
µ

2mπmµ

.
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The lifetime in the lab frame is γτ and the distance is vγτ . Putting in the numbers gives me a
distance of 169 m.

(8) The Bevatron at Berkeley produced antiprotons by the reaction p + p → p + p + p + p̄, where a
high energy proton strikes a proton at rest on the LHS. What is the minimum energy required
for the striking proton?
Now assume that both the initial protons are moving (for a head-on collision). Now what is
the minimum energy required by each initial proton for this reaction?

Solution: The minimum energy required by the initial proton will be that energy that barely
produces the necessary particles, i.e. produces the necessary particles at rest, without ’wasting’
any energy for the kinetic energy of the particles on the right side.

The total 4-momentum before the collision is obtained by adding the 4-momentum of the mov-
ing proton (E/c, |p|, 0, 0) and the stationary target proton (mc2/c, 0, 0, 0). [Here I have chosen
to align the momentum to x-axis.] The initial 4-momentum is thus ((E + mc2)/c, |p|, 0, 0).

The final 4-momentum of the four particles (all at rest for threshold) is (4mc2/c, 0, 0, 0).

Equating the invariants gives

(
E

c
+ mc

)2
− p2 = (4mc)2

E2

c2 + m2c2 + 2Em −
(

E2

c2 − m2c2
)

= 16m2c2

2Em = 14m2c2

E = 7mc2

where I have used E2 − p2c2 = m2c4 to give p2 = E2/c2 − m2c2.

Thus the total energy needed by the proton is 7mc2, and thus 6mc2 of kinetic energy is needed
to produce an additional proton-antiproton pair.

Now let us do the same exercise for when the initial protons have opposite and equal momenta
and energies of E each. The initial 4-momentum is pi = (2E/c, 0, 0, 0), and to produce the
final particles at rest the final 4-momentum is pf = (4mc, 0, 0, 0). Equating invariants p2

i = p2
f

gives us 4E2/c2 = 16m2c2, i.e. E = 2mc2.

Note the total energy needed here is 4mc2. We see that we need to add only mc2 worth of
kinetic energy to each proton and we see that collisions between particles that are both moving
are much more efficient than hitting a stationary target.

(9) An electron annhilates with a positron as follows: e− + e+ → γ + γ. Let the positron be at
rest initially, and the electron have kinetic energy of 1.0 MeV. The emitted photons travel at
angle θ with the electron’s direction of motion. Determine the energy E, momentum p and
angle of emission θ of each photon. (Note: me = 0.511 MeV/c2, Eγ = pc). What is the angle
of emission θ if the electron has kinetic energy of 1.0 GeV?
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Solution: The setup for the problem is shown in the figure.

An electron comes in with kinetic energy of K and annhilates with a positron at rest to produce
two photons. The two photons each move with angle θ with the original electron direction
(which we can take as x-axis).

We shall use a result from Problem 6, viz. γ2 = 1 + p2/(m2c2). The kinetic energy can be
written as total energy − rest energy. Thus K = E − mc2 = γmc2 − mc2 = (γ − 1)mc2. This
gives γ = 1 + K/mc2. Equating the two expressions for γ2

(
1 + K

mc2

)2
= 1 +

(
p

mc

)2

1 + K2

m2c4 + 2K

mc2 = 1 + p2

m2c2

p2 = K2

c2 + 2Km

p =

√
K(K + 2mc2)

c

This gives us an expression for the momemtum, once kinetic energy is known.

Now the total energy before is E = K + 2mc2. By conservation of energy, and symmetry, the
two photons must share the energy, and thus Eγ = E/2. And the momentum for the photons
is pγ = Eγ/c = E/(2c).

The momentum for any photon makes an angle θ with the x-axis. Conservation of momentum
along x-axis gives us pγ cos θ = p/2 and thus cos θ = p/(2pγ).

Now let us put in some numbers.
Initial kinetic energy K = 1.0 MeV.
Thus initial momentum p = 1.422 MeV/c.
Now E = K + 2mc2 = 2.022 MeV
and pγ = Eγ/c = 1.011 MeV/c
Thus cos θ = 1.422/2.022
and θ = 45.3◦.

Initial kinetic energy K = 1.0 GeV.
Thus initial momentum p ≃ 1.0 GeV/c.
Now E = K + 2mc2 ≃ 1.0 GeV
and pγ = Eγ/c = 0.5 GeV/c
Thus cos θ ≃ 1.00/1.00
and θ ≃ 0◦.

What we can see is that as the initial kinetic energy increases, the opening angle between the
produced photons becomes smaller and smaller.
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(10) Compton scattering: A photon of wavelength λ collides elastically with a charged particle of
mass m. If the photon scatters at angle θ, show that its outgoing wavelength λ′ is
λ′ = λ + (h/mc)(1 − cos θ).

Solution: Let the incoming photon come along x-axis, the charged particle is at rest. After
scaterring, the photon scatters at an angle θ with incoming photon direction, let the charged
particle (of mass m) scatter at angle ϕ with incoming photon direction. Let E and E ′ be the
energies of the incoming and outgoing photon respectively.

Conservation of momentum tells us that for the outgoing particles, the components of momen-
tum perpendicular to x-axis should cancel out.
Thus pm sin ϕ = pγ sin θ ⇒ sin ϕ = (E ′/cpm) sin θ.

Along the x-axis, conservation of momentum gives us

E

c
= pγ cos θ + pm cos ϕ

= E ′

c
cos θ + pm

√√√√1 −
(

E ′ sin θ

cpm

)2

∴ E = E ′ cos θ +
√

p2
mc2 − (E ′ sin θ)2

(E − E ′ cos θ)2 = p2
mc2 − (E ′ sin θ)2

∴ p2
mc2 = E2 + E ′2 cos2 θ − 2EE ′ cos θ + E ′2 sin2 θ

= E2 + E ′2 − 2EE ′ cos θ

Applying conservation of energy gives us

E + mc2 = E ′ +
√

m2c4 + p2
mc2

= E ′ +
√

m2c4 + E2 + E ′2 − 2EE ′ cos θ

∴ (E − E ′ + mc2)2 = m2c4 + E2 + E ′2 − 2EE ′ cos θ

E2 + E ′2 + m2c4 − 2EE ′ + 2Emc2 − 2E ′mc2 = m2c4 + E2 + E ′2 − 2EE ′ cos θ

Emc2 − E ′mc2 = EE ′ − EE ′ cos θ

(E − E ′)mc2 = EE ′(1 − cos θ)

∴ mc2hc
(1

λ
− 1

λ′

)
= h2c2

λλ′ (1 − cos θ)

mc(λ − λ′) = h(1 − cos θ)

∴ λ′ = h

mc
(1 − cos θ) + λ

where we have used E = hc/λ for the photon.
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