PHY4154 NUCLEAR AND PARTICLE PHYSICS

Assignment 1

- (1) Find the speed at which a meter stick is moving if its length is observed to shrink to 0.5 m.
- (2) Two bodies of mass m, each with speed $\frac{3}{5}c$, collide head on and stick together. What is the mass of the final clump?
- (3) A body of rest mass m moving at speed v collides with and sticks to an identical body at rest. What is the mass and momentum of the final clump?
- (4) A muon has a proper lifetime of $2.0 \,\mu s$. It is created $100 \,\mathrm{km}$ above the earth and moves towards earth at $2.97 \times 10^8 \,\mathrm{m/s}$. At what altitude does the muon decay? According to the muon, how far did it travel in its life?
- (5) The muon decays as $\mu \to e \bar{\nu}_e \nu_\mu$. If the number of muons at t=0 is N_0 , the number N at time t is $N=N_0 e^{-t/\tau}$, where $\tau=2.0~\mu s$ is the proper lifetime of the muon. Suppose the muons move at speed 0.95c. What is the observed lifetime of the muons? How many muons remain after traveling a distance of $3.0~\rm km$.
- (6) Show that the energy-momentum relationship $E^2 = p^2c^2 + m^2c^4$ follows from the relations $E = \gamma mc^2$, and $p = \gamma mv$.
- (7) A pion at rest decays to a muon and a neutrino. What is the speed of the muon? (You may answer in terms of m_{π}, m_{μ} etc.). On average how far will the muon travel (in vacuum) before disintegrating? (Use $m_{\pi}=139.6~{\rm MeV}/c^2, m_{\mu}=105.7~{\rm MeV}/c^2$ to give an answer in metres.)
- (8) The Bevatron at Berkeley produced antiprotons by the reaction p+p → p+p+p+p̄, where on the LHC a high energy proton strikes a proton at rest. What is the minimum energy required for the striking proton?
 Now assume that both the initial protons are moving (for a head-on collision). Now what is the minimum energy required by each initial proton for this reaction?
- (9) An electron annhilates with a positron as follows: $e^- + e^+ \rightarrow \gamma + \gamma$. Let the positron be at rest initially, and the electron have kinetic energy of 1.0 MeV. The emitted photons travel at angle θ with the electron's direction of motion. Determine the energy E, momentum p and angle of emission θ of each photon. (Note: $m_e = 0.511 \ {\rm MeV}/c^2$, $E_{\gamma} = pc$). What is the angle of emission θ if the electron has kinetic energy of 1.0 GeV?
- (10) Compton scattering: A photon of wavelength λ collides elastically with a charged particle of mass m. If the photon scatters at angle θ , show that its outgoing wavelength λ' is $\lambda' = \lambda + (h/mc)(1 \cos \theta)$.