Chapter 3 2 Relodivistic Kinematics
Energy and Momentum I

Proper fime (T) : Thwe measured by an object in its own rest-frame.

This becomes releqvant  when you try fo measure momentum of on obJ'ect.
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Why shld T cave about Hhis mew 'proper’ velocii)l m 4D 7

Classically, momentum = mass x velocity.
Tn velodivity , f we use p=mv, then the law of consevotron of momemtum
breoks down (bewawse v s changing).

You should yead the -followina cavefully, including the Jootrote.

Classically, momentum is mass times velocity. We would like to carry this
over in relativity, but the question arises: Which velocity should we use—ordinary
velocity or proper velocity? Classical considerations offer no clue, for the two
are equal in the nonrelativistic limit. In a sense, it’s just a matter of definition,
but there is a subtle and compelling reason why ordinary velocity would be a
bad choice, whereas proper velocity is a good choice. The point is this: If we
defined momentum as mv, then the law of conservation of momentum would
be inconsistent with the principle of relativity (if it held in one inertial system,
it would not hold in other inertial systems). But if we define momentum as mq,
then conservation of momentum is consistent with the principle of relativity (if
it holds in one inertial system, it automatically holds in all inertial systems). I'll
let you prove this for yourself in Problem 3.10. Mind you, this doesn’t guarantee
oo amd it goes on.

* Proper velocity is a hybrid quantity, in the sensethat distance is measured in the lab frame,
whereas time is measured in the particle frame. Some people object to the adjective “proper” in this
context, holding that this should be reserved for quantities measured entirely in the particle frame.
Of course, in its own frame the particle never moves at all —its velocity is zero. If my terminology

disturbs you, call n the “four-velocity.”’ I should add that although proper velocity is the more con-
venient quantity to calculate with, ordinary velocity is still the more natural quantity from the point

of view of an observer watching a particle fly past.
(Geiffidhs beok )

Tn relotivity, momentum is defined i ferms of proper velocity as follows.
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What happens when e vedefme momenfum like this 7

ph= mvl/‘ Space part Time. part
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Collisions
Enevgy— momenfum velafions :
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Types of Collisioms :

Classical Mechanics

* Mass is conserved. —
e Fach component of momentum —

IS conservee
* Subcases :
Q) KE s comserved - Elasfic collision
® KE is veduced —> Strcky collision
@ KE is increased = Explosive collision
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Relgtivistre Mechanics.

* Fach com/:onenf of PM s
consevved - ( E and 5))
*mass 1s not conserved m

* Subcases :
() KE s conserved - Elasfic collision

® KE is reduced —> Sticky collision
@ KE is increased = Explosrve collision
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ExamE/e,s :

Sticky collision = Two lumps of clay, each of mass m, colide head on
at Yo, a fom o mew lump, What is fhe mass of the combimed fump?
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Explosive  collision ¢ 4 lemp of mass M ol rest, explodes o o epua/
pieces of mass m. [ohat ic the speed of each mass m ?
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Pin decay : A 1 ot vest decays fo & w and & V.. What is the speedef 4 ?
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In this case.

V_ v
i =fu}c ~ 02e

v v
My + My




P-P collision: A {gvget profon is ok vest . Another high energy proton shikes
it. What is the fhweshold evergy for the following intevaction 7
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Collider v.s. fixed ‘]mryef experiment ¢ Which one is betfer ?

Congider the previous example. but both profons are a,op'roach)%ﬂ
each othey af equal and opposite momentum -
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Jn this case, me‘ (initial) = (2E . o, 0, 0)
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Since. P},P’A S comServed y w expected this result
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c previous reswt, but
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The thveshold energy of the individual pretns in the collider expeximent
i 138 GeV, ohile that of the prolom beam in the Fired ’ra’rjd“
expeviment is  6'5F Gev.

Instead of having 1 protom beam e
hifh'ﬂa & fixed 'fa'gef, having
2 profm beoms biiﬁng eoch other
ie much move efffcient .

The LHC is & collider experimen’c.




