
Energy and Momentum Chapters : Relativistic kinematics
- David J Griffiths

Proper time (e) : Time measured by an object in its own rest- frame .

This becomes relevant when you try to measure momentum of an object .

The Lorentz scale factor : r =
1 • always greater than 1 .
FEE • approaches x as u > c

Now . proper time of an object :
• dz : time internal measured by a object

> what we
measure which is moving from our perspective

dt in lab .

DT =
y

• dt : what we measure in lab .

• dz < dt : that interval of time1
actual half life ofµ appears longer to us . Time dilation !

Proper time is a Lorentz invariant quantity .

Velocity and Proper- velocity : suppose an object (at) is moving .

Velocity .
u→= dig

both Ñ and t changes under Lorentz transformation .

Proper velocity , y→ = dñ
→ only Ñ changes under Lorentz transformation3D { dz ⇒ if = ju→ • Ñ is a scaled version of it

• It changes like ñ under

Lorentz transformation .
Now , let's talk in terms of 4-vectors .

This will have some interesting consequences.
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Then . Yu = 8 ( C ,
- Un. - Uy , - Vz)

:. nµM = r { E- (uñ+uj+uE )} = Ñ{1-%} = i > invariant !



Why should I care about this new '

proper
'

velocity in GD ?

Classically , momentum = mass ✗ velocity.
In relativity , if we use p= mv , then the law of conservation of momentum

breaks down ( because u is changing) .

You should read the following carefully , including the footnote .

. - . . . and it goes on .

(Griffith 's book)

In relativity , momentum is defined in terms of proper velocity as follows .

p→ = m n→

PM = mym *
Remember 8

PM = (E- , Pan Py , Pz)



What happens when we redefine momentum like this ?

pM=myM Space part Time part

p→ = MÑ = 8mi p° = MY = Jmc
mu→

⇒ Ñ = A ⇒ E- = Jmc

1- v70
⇒ E = 6mi B

Now
,
the 4-momentum vector is defined as pm = E- , Pu , Py . Pz)

É
o: PµPM -

zu
- pit py~+ PE

= Eg - p→~ { putting values from ④ and BO}
= mid

This result is often written as
, Papa = mid

or, EV = p
>Er -1 MY4

We can expand E as follows :
> Total E = met classical KE !

E = { Fit mica }
"2

This is where E- me

= me { 1- + IE }
"2

ftp.jmu} came from ! This is widely
misinterpreted in media .

- mils + %}
" { broke

.}0=1
The complete expression is

= mi{ 1+1-2 + f- ¥-1 . - .} É=pÑ+mc4 .

for . E = Tmo)For uke @on relativistic ease)
we only keep the first two terms .

• For a massive object with
negligibe momentum , E-me•:

E = ME -1 Izmir
• For photons , E = PC



Collisions
Important relations !

Energy-momentum relations :
E= Tmi . 1- = E-me =@- 1)mi
p = 8mV , É= p~c~+Ñc4PM = , Pu . Py , Pz)

pµpM = EET - Pu. Pu- Py - Py - Pz. Pz ✓

= EYE - Ñ. É = mid < Under non-relativistic (VKD
Pupil = mid = Lorentz invariant (scalar) limit

,
this reduces to the

classical expression of Energy.

E = ME -1 EmirLorentz invariant quantities like paper
transforms like this ⇒

Pip 'm = { A} Pr }{ AT pd} > both Pj and PÑ

transform under Lorentz
= A) Atf Pup

"
transformation in " opposite

"

kind of way .
= 8% Pup

"

= pupil µ is just a dummy index .

= pµpM PµPµ is a
"

scalar
"

quantity .

Types of Collisions :

Classical Mechanics Relativistic Mechanics .

• Mass is conserved .

}
• Each component of PM is

• Each component of momentum conserved . ( E and F)
is conserved .

* mass is not conserved in general .
• Subcases : • Subcases :

① KE is conserved > Elastic collision ① KE is conserved > Elastic collision

① KE is reduced > sticky collision ① KE is reduced > sticky collision

! KE is increased > Explosive collision ! KE is increased > Explosive collision



Examples :

sticky collision : Two lumps of clay , each of mass m ,
collide head on

at 315C, a form a new lump . What is the mass of the combined lump ?

→iwks.SIThe relative velocity initial :
m ,
, → mu

between the two lumps are PM :( E÷ , P1 , 0,0) U = 315C (E- , Pz , 0,0)
given (Hgc) . Let's look at

this in the COM frame . final :

The final velocity of the
it

PM : ( EMI , 0 > 0,0)combined lump =o in this frame .

Now , we can consider two Figure : Center of mass frame

components of PM :

P1 % P1 + Pz = 0 ⇒ P1 = - Pz

p° 8 Ey 1- Ez = EM

conservation of Energy : initial rest- mass energy = final rest- mass energy

me me
⇒

1- (3155
+

, -4,5g
=
ME

solving for M : M = ¥ Gmt)

Explosive collision : A lump of mass M at rest
, explodes into two equal

pieces of mass m . What is the speed of each mass m ?

50¥
From conservation of momentum (pt) in initial : M

the a direction , you can see that PM : (E. o , o .
0)

the two masses have equal and ← m '
'

z-iifm.io
→

opposite momentum - Applying conservation final :

of energy : pm : .
- P
,
0.0) ( ¥ , p . 0.0)

E1 + Ez = ME

⇒
ME men

1- uy,
= Me ⇒ v = C 1- 4m/MY

1- vycr
+



Pion decay : A Ti at rest decays to a µ
-

and a Vj . What is the speed of µ ?
Sol"
=

IT① Conservation of energy : ER --Eµ+Ev initial :

① Conservation of momentum : Pµ+ Pu = 0 EI , 0,0 , 0
In order to calculate velocity , we need to find Pµ first .

For the first equation , we can find out
the energies of the individual particles .

final : a- < > In

(we assume that neutrinos are massless) ( Etd , Pµ > 0,0) ¥_ , Pj , 0.0
Using E = pre + mic" ,

Er = dirt mic " = mnc4 ⑨

Eµ= Five-mile" = c Fei + maid ⑤

Ev = Ñi+dc4 =/Pile =/ Pie / c ② { from ①}
Putting this in ①

,

c p→Ñ+m~µE + P→µ c = mad

⇒ p-iii-mii-lm.ec - tail }
"

⇒ ¥-1 mini = mid -1 25in Mac

⇒ pi =/mi
- mi / c
2mn

mi + MÑ / i {using E= Ñi+ñc"}Also
, EM = { 2mn

We know that E = Tmi and P=Jmv
. Therefore

, v = Epg .

In this case ,

ya =/
MI - MÑ Jc = 0271C

mñ -1mi



P- P collision : A target proton is at rest . Another high energy proton strikes

it . What is the threshold energy for the following interaction ?

initial final
pt

>÷;;
P + Crest ,

P+
pt

>

p
-1

>

p
-

s

soI_ Let us consider the four vectors :

initial : ( E- .
P

,
o
,
o) and m¥ ,

o , o , o)
final : Energy = at least 4mi→ This is the minimum energy of the final

state
.
Since we are calculating threshold , we

need an expression for E
,
when the four ps

in the final state has minimum total energy .

•: Total PM ( initial ) = E- + me , p , o , 0

Total PM (final ) = ( Gmc ,
0
, 0

>
0)

since PµPM is conserved ,

→ Since we want

{ E. + me }
"

- p
"

= {Gmc }
"

E
, we eleminate p

"

by using
⇒ + merit 2Em - {¥- more} = 16mW = print my 4

⇒ 2Em + 2MY = 26mW

⇒ E t me = 8mW

⇒ E = 7mi

= 6. bit GeV



Collider v.s .
Fixed target experiment : Which one is better ?

Consider the previous example , but both protons are approaching
each other at equal and opposite momentum .

initial final

pt p
-1

i.i:<

(E , P >
0
,
0 ) (¥ ,

- P , o , o ) ( 4m¥, o , o , O )
In this case , ph

total
( initial) = ( 2¥ , o , o , o)

pm
total

( final) = (LIE ,
o
,
o
,
o)

You may have
since PµPM is conserved , expected this result

(¥5 = (4mi )
"

to be half of the

previous result, but

⇒ 2¥ = Gmc this is even less !

⇒ E = 2mi = 1. 88 GeV

The threshold energy of the individual protons in the collider experiment
is 188 GeV , while that of the proton beam in the fixed target
experiment is 6. 5T GeV .

Instead of having 1 proton beam

hitting a fixed target , having
2 proton beams hitting each other

is much more efficient .

The LHC is a collider experiment .


