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Abstract

Quantum-level energy storage and usage is gaining significant interest among scientific com-

munities with a newly introduced concept in quantum thermodynamics, namely ergotropy. Er-

gotropy quantifies the maximum amount of work that can be extracted unitarily from an energy-

storing quantum device. Ergotropy is a core concept used in quantum batteries, and since it

can help certify entanglement, it connects quantum thermodynamics with quantum information.

With long coherence times, strong spin-spin interactions, and precise and intricate control over

quantum dynamics, the nuclear spin qubits offer an excellent testbed for studying such quantum

concepts.

By manipulating qubit energy across different parts of star-topology spin systems, we ex-

perimentally realize quantum batteries, monitor their ergotropy, establish the quantum speedup,

achieve asymptotic charging, and demonstrate a charger-battery-load circuit. We show that mea-

suring specific variants of ergotropy can help certify bipartite entanglement in multiqubit systems

without explicitly knowing their quantum states. In particular, the criteria depend on the dif-

ference in optimal global and local works extractable from an isolated quantum system under

global and local interactions, respectively. As a proof of principle, we demonstrate entanglement

certification on nuclear spin registers with up to 10 qubits.

Finally, we propose and experimentally demonstrate a feedback-based algorithm (FQErgo)

for estimating ergotropy. This method also transforms an arbitrary initial state to its passive state,

which allows no further unitary work extraction, providing a practical way for unitary energy

extraction and for preparing passive states. By numerically analyzing FQErgo on random initial

states, we confirm the successful preparation of passive states and estimation of ergotropy, even

in the presence of drive errors. Finally, we implement FQErgo on two- and three-qubit NMR

registers, prepare their passive states, and accurately estimate their ergotropy.
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Synopsis

We report on the use of nuclear spins in NMR architecture to research quantum battery and many

body entanglement in this thesis. There are four chapters in the thesis, each of which is briefly

summarised below.

Chapter 1 − Introduction

We start this chapter by introducing the fundamentals of quantum information processing, start-

ing with qubits, quantum gates, density operators, and ending with measurements. Further, we

describe quantum correlations and a newly introduced concept, ergotropy. Finally, we focus on

the experimental setting by describing the NMR experimental test bed and its potential applica-

tions to quantum information processing problems before rounding up this chapter.

Chapter 2 − Nuclear spins as quantum battery

In this chapter, we experimentally investigate various aspects of quantum batteries with the help

of nuclear spin systems in a star-topology configuration. We first carry out numerical analysis

to study how charging a quantum battery depends on the relative purity factors of charger and

battery spins. By experimentally characterizing the state of the battery spin undergoing charging,

we estimate the battery energy as well as the ergotropy, the maximum amount of work that is

unitarily available for extraction. The experimental results thus obtained establish the quantum

advantage in charging the quantum battery. We propose using the quantum advantage, gained

via quantum correlations among chargers and the battery, as a measure for estimating the size of

the correlated cluster. We develop a simple iterative method to realize asymptotic charging that

avoids the oscillatory behavior of charging and discharging. Finally, we introduce a load spin and

realize a charger-battery-load circuit and experimentally demonstrate battery energy consumption

after varying the duration of battery storage, for up to 2 min.

Chapter 3 − Verification of many-body entanglement in NMR
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In this chapter, we propose a set of entanglement criteria for multi-qubit systems that can be easily

verified by measuring certain thermodynamic quantities. In particular, the criteria depend on the

difference in optimal global and local works extractable from an isolated quantum system under

global and local interactions, respectively. As a proof of principle, we demonstrate the proposed

scheme on nuclear spin registers of up to 10 qubits using the Nuclear Magnetic Resonance ar-

chitecture. We prepare noisy Bell-diagonal state and noisy Greenberger-Horne-Zeilinger class of

states in star-topology systems and certify their entanglement through our thermodynamic crite-

ria. Along the same line, we also propose an entanglement certification scheme in many-body

systems when only partial or even no knowledge about the state is available.

Chapter 4 − Maximal work extraction from nuclear spins using FQErgo

In this chapter, we propose and experimentally demonstrate a feedback-based algorithm (FQErgo)

for estimating ergotropy. This method also transforms an arbitrary initial state to its passive state,

which allows no further unitary work extraction. FQErgo applies drive fields whose strengths are

iteratively adjusted via certain expectation values, conveniently read using a single probe qubit.

Thus, FQErgo provides a practical way for unitary energy extraction and for preparing passive

states. By numerically analyzing FQErgo on random initial states, we confirm the successful

preparation of passive states and estimation of ergotropy, even in the presence of drive errors. Fi-

nally, we implement FQErgo on two- and three-qubit NMR registers, prepare their passive states,

and accurately estimate their ergotropy.

Chapter 5 − Closing Remarks and Outlook

In this chapter, we conclude the thesis by summarizing key findings and discussing future research

directions.
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CHAPTER 1

Introduction

Laser technology and transistors were pivotal in sparking the transformative advancements of the

digital era, revolutionizing electronics and paving the way for innovations like computers, com-

munication devices, and modern cell phones. These technologies enabled rapid development in a

variety of fields, including entertainment, business, and education, fundamentally changing how

we interact with the world around us. However, when it comes to quantum systems, the com-

plexity of their underlying physics presents significant challenges [1]. Even the most powerful

supercomputers in existence today struggle to replicate many of the basic quantum mechanical

phenomena observed in nature, which are essential to understanding the behavior of particles

at the atomic and subatomic levels. This limitation is a significant barrier to advancements in

quantum mechanics, which has the potential to revolutionize many aspects of technology and

science.

In the 1980s, two pioneering scientists, Yuri Manin and Richard Feynman, proposed a ground-

breaking idea about the potential of quantum simulators [1]. They suggested that using a quantum

system to simulate another quantum system would be far more efficient than relying on traditional

Turing computers. The immense complexity of quantum phenomena meant that simulating these

processes with classical computational methods would require an impractical amount of time and

resources. This insight led to the notion of quantum computers, which could, in theory, use the

principles of quantum mechanics to solve problems that are otherwise intractable for classical

computers. This idea was revolutionary, and over the next several decades, it gained significant

traction.

By the 1990s, researchers began to explore the vast potential of quantum simulators in more

detail. A number of notable works emerged, such as the Deutsch-Jozsa algorithm [2], which pro-

vided a way to determine whether an n-bit function was constant or balanced, and Grover’s search

algorithm [3], which greatly improved the efficiency of searching an unstructured database. Ben-
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nett and Brassard’s creation of the BB84 quantum cryptography protocol [4] also introduced a

secure method of communication based on the principles of quantum mechanics, which has pro-

found implications for data security. Meanwhile, Shor’s algorithm [5] demonstrated that quantum

computers could potentially factor large numbers in polynomial time, which has significant ap-

plications in cryptography and data encryption.

In 1997, quantum computing reached a major milestone with the first experimental realization

of quantum computing, achieved through nuclear magnetic resonance (NMR) experiments led by

Cory et al. [6] and Gershenfeld et al. [7]. This success opened the door to a new era of exper-

imental quantum computing, which has since expanded into several promising areas. Quantum

computing designs now span across diverse approaches, including photonic systems [8–11], ul-

tracold atoms [12–14], quantum dots [15–17], trapped ions [18, 19], and superconducting qubits

[20, 21]. These designs all leverage different aspects of quantum mechanics to perform computa-

tions that classical computers cannot, offering exciting possibilities for the future of computation

and technology.

At present, the field of quantum computing is advancing rapidly, with significant investments

from major tech companies such as IBM [22], Google [23], and several emerging startups like

D-Wave, IonQ, and Rigetti [24–27]. The race to develop practical quantum computers is on, and

these companies are pushing the boundaries of what is possible with current quantum technolo-

gies. The second quantum revolution is already well underway, and its impact on both science

and industry is likely to be far-reaching. As quantum technologies become more refined and

accessible, industries ranging from pharmaceuticals to energy could benefit from advancements

that were once thought to be decades away. The integration of quantum computing with other

technologies, such as machine learning and artificial intelligence, could also yield transformative

results. Quantum systems could offer unprecedented levels of speed and efficiency in solving

complex problems, driving innovation across virtually all sectors of society.

The following sections will explore the fundamental principles of quantum information pro-

cessing in detail. Additionally, they will discuss how these principles can be integrated with

nuclear magnetic resonance (NMR) architecture to further advance the capabilities of quantum

systems.

2



1.1 Quantum information processing

1.1 Quantum information processing

In this section, we briefly look into the building blocks of quantum information.

1.1.1 Qubits

1.1.1.1 One-qubit system

A binary digit, or bit with value 0 or 1, is the fundamental unit of classical information. This may

be physically achieved in any system that has two separate states, such as two voltage nodes, two

different operating regions of a transistor, or the alignment of a magnetic material. In classical

computing, these bits are subjected to logical operations, which result in a string of bit values

as the output. Qubits, the equivalent of bits in quantum mechanics, are basically represented

by two-level quantum systems that can be realised in a variety of ways, including spin states of

electrons or nuclei or polarisation states of photons. The ground state of a two-level system |g⟩ or

|0⟩ corresponds to logical 0 and the excited state |e⟩ or |1⟩ corresponds to logical 1. Surprisingly,

qubits may exist in both states simultaneously, resulting in a strange quantum phenomenon called

quantum superposition, which is impossible to explain classically. The general state of a qubit

in the two-dimensional Hilbert space can hence be described in terms of the superposition of

orthogonal basis states |0⟩ and |1⟩ as [28]

|ψ⟩ = c1|0⟩+ c2|1⟩, (1.1)

where the complex coefficients {c1, c2} must satisfy normalization |c1|2 + |c2|2 = 1. The qubit

is precisely in state |0⟩ for c1 = 1, state |1⟩ for c2 = 1, and in a superposition for c1 ̸= 0 ̸= c2.

Often called the computational basis states, the states |0⟩ and |1⟩ can be expressed in matrix form

as |0⟩ =

1
0

 and |1⟩ =

0
1

, producing a general state in the form |ψ⟩ =

c1
c2

.

By equivalently expressing Eq. 1.1 in the form

|ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩, (1.2)

which geometrically represents a point on a sphere of unit radius known as the Bloch sphere,

3
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allows us to represent a generic single qubit state as shown in Fig. 1.1. The polar and azimuthal

angles, θ ∈ [0, π] and ϕ ∈ [0, 2π], respectively, cover all locations on the sphere with c1 =

cos(θ/2) and c2 = eiϕ sin(θ/2) clearly normalizing the state in Eq. 1.2.

Figure 1.1: Bloch sphere representation of a qubit in a state |ψ⟩.

1.1.1.2 N-qubit system

Most general N-qubit pure state can be written as

|Ψ⟩ =
∑
j

cj|ϕ1j⟩ ⊗ |ϕ2j⟩ ⊗ ....⊗ |ϕNj⟩ (1.3)

where |ϕij⟩ refers to ith qubit in jth term of the superposition, and cj are the complex coefficient

normalized to unity. For instance, if we consider |ϕij⟩ to be only {|0⟩, |1⟩} then the N-qubit

system state can be created from a tensor product of single-qubit basis states as |ϕ⟩ =
∏

N ⊗|i⟩

for i = 0, 1, and the related Hilbert space dimension grows exponentially as 2N as the number of

qubits N rises. For example, |0⟩⊗N yields the N-qubit composite state |00...0⟩. Thus extending

the notion of Eq. 1.1 one can write

|Ψ⟩ = c1|00...0⟩+ c2|00...1⟩+ c3|00..1..0⟩+ ...+ cN |10...0⟩+ ...+ c2N |11...1⟩, (1.4)
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1.1 Quantum information processing

where the states |ϕ⟩ =
∏

N ⊗|i⟩ for i = 0, 1 span the basis and coefficients fulfil the condition∑2N

i=1 |ci|2 = 1. Like Bloch sphere for the single qubit case it is very difficult to envision such

pure states of N-qubit system geometrically.

1.1.2 Quantum logic gates

In conventional technologies, physical devices called logic gates—such as NOT, OR, NOR, and

so forth—are used to process information. Quantum gates are used in a similar way to process

information in quantum technology. Unitary operators working on qubits to change an initial

state into a desired end state are known as quantum gates. If a qubit starts in an initial state |ψ⟩,

then the application of the unitary operator U transfers it to

|ψ′⟩ = U |ψ⟩ (1.5)

Figure 1.2: Bloch sphere representation of a unitary operation on a single qubit in a state |ψ⟩.

Some basic single and N-qubit gates are discussed below.

1.1.2.1 One qubit gates as rotation

The transformation of a one-qubit state from |ψ⟩ = c1|0⟩+c2|1⟩ to |ψ′⟩ = c′1|0⟩+c′2|1⟩ is nothing

but a rotation in the Bloch sphere about a direction a⃗ = axx̂+ ayŷ + az ẑ by an angle θ. One can

use Pauli spin matrix vector σ⃗ = σxx̂+ σyŷ + σz ẑ to realise a general rotation operator as

5
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Ra⃗(θ) = exp

(
−iθa⃗ · σ⃗

2

)
= cos

(
θ

2

)
1− i sin

(
θ

2

)
(⃗a · σ⃗). (1.6)

where σx =

0 1

1 0

, σy =

0 −i

i 0

, and σz =

1 0

0 −1

.

For example, the rotation operator for θ = 180◦ about the x-axis has the matrix formRx(π) =0 1

1 0

 up to a phase factor. This operator acts as the quantum counterpart of a NOT gate, giving

us the transformation |0⟩ → |1⟩ and vice-versa. Similarly, distinct transformations are produced

by π rotations around the y and z axes.

The Hadamard gate

H =
1√
2

1 1

1 −1

 (1.7)

which produces superposition of states as |0⟩ → |0⟩+|1⟩√
2

and |1⟩ → |0⟩−|1⟩√
2

and the phase gate

Rϕ =

1 0

0 eiϕ

 . (1.8)

which leaves |0⟩ intact while selectively giving a phase to the state |1⟩ → eiϕ|1⟩ are some of the

important gates that are widely used for quantum operations.

1.1.2.2 N-qubit gates

N-qubit gates are operations performed simultaneously on more than one qubit. One of the most

important two-qubit gates is the controlled-not gate, or CNOT. This gate changes the state of

the target qubit (T) conditional to the state of the control qubit (C). The operation proceeds the

following way: First, if the control qubit is in state |0⟩, then the target qubit is unperturbed;

second if the control qubit is in state |1⟩, then a NOT gate is applied on the target qubit. Hence,

under the action of this gate (in the computational basis), lets take our first qubit to be control and

the second qubit as target, then the states {|00⟩, |01⟩} remain unchanged, while |10⟩ → |11⟩ and

|11⟩ → |10⟩. The matrix form of this gate, where the first qubit is the control qubit and second

6



1.1 Quantum information processing

qubit is the target, is given by

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.9)

Any Hamiltonian evolution may be described as a combination of gates in the universal set

formed by single qubit gates and the two-qubit CNOT gate [28]. TOFFOLI and SWAP gates are

two other often used multi-qubit gates [28].

1.1.3 Density operator

1.1.3.1 Mixed states

Till now we were dealing with a single state vector of the form |Ψ⟩ = c1|00...0⟩+c2|00...1⟩+ ...+

c2N |11...1⟩. If all systems in an ensemble are prepared in the same way and in the same condition,

they are said to be in a pure state |Ψ⟩. Conversely, if the ensemble represents a statistical mixture

of distinct pure states, then no one state vector |Ψ⟩ can adequately characterise the state of the

entire system. Any measurement in such a combination will have a different result throughout the

whole ensemble depending on which sub-ensemble is being sampled. In order to describe such a

system, it is necessary to use the density operator formalism, which is written as

ρ =
∑
i

λi|λi⟩⟨λi|, (1.10)

where {|λi⟩} are pure states, and the probabilities λi add to 1. For example, a general mixture of a

single-qubit system in the computational basis states can be given by ρ = λ|0⟩⟨0|+(1−λ)|1⟩⟨1|+

α|0⟩⟨1| + α∗|1⟩⟨0|. Here, the probability of a measurement yielding outcome corresponding to

|0⟩ is λ and that of |1⟩ is (1 − λ). It is significant to remember that a mixed state’s probability

distribution of measurements differs significantly from a (pure) superposition state’s. Depending

on the system’s level of mixedness, mixed states for a single qubit can reside at any radius from

the Bloch sphere’s surface to its core. The identity operator 1/2N , which is located at the centre

of the N -dimensional hypersphere (for multi-qubit systems) or the Bloch sphere (for single qubit

systems), indicates the maximum mixed state of N qubits.
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1.1.3.2 Bloch-sphere representation for mixed states

A general single-qubit state, whether pure or mixed, can be written in terms of the density matrix

ρ =
1

2

(
I + r⃗ · σ⃗

)
,

where σ⃗ = (σx, σy, σz) are the Pauli matrices and r⃗ = (rx, ry, rz) is the Bloch vector

• Pure states satisfy ∥r⃗∥ = 1, placing them on the surface of the Bloch sphere.

• Mixed states satisfy ∥r⃗∥ < 1, so they correspond to points inside the sphere—forming the

Bloch ball

The purity of the state is quantified by

Tr(ρ2) =
1

2

(
1 + ∥r⃗∥2

)
,

so that Tr(ρ2) = 1 for pure states and Tr(ρ2) < 1 for mixed states, with the maximally mixed

state ρ = 1
2
I at the center (∥r⃗∥ = 0)

Geometrically, the Bloch vector r⃗ encodes both the directional qubit structure and the degree

of statistical mixture:

unitary (coherent) evolutions → rotations of r⃗, non-unitary (noisy) dynamics → shrinkage inward.

This provides a clear visual representation of decoherence and state purity in qubit dynamics

where any point inside of the Bloch sphere shown in Fig. 1.1 represents a mixed state.

1.1.3.3 Density operator formalism

The development of quantum systems is frequently described and studied using the density oper-

ator formalism. For a pure state |ψ⟩, a density operator or matrix is defined as

ρ = |ψ⟩⟨ψ|, (1.11)

8



1.1 Quantum information processing

Nevertheless, the majority of natural systems exhibit mixed states, which are statistical mixes of

several pure states {|λi⟩}, which can only be represented by density operator

ρ =
∑
i

λi|λi⟩⟨λi|, with
∑
i

λi = 1. (1.12)

having following properties.

(i) tr(ρ) = 1 which guarantees normalization, i.e. all probabilities sum up to 1.

(ii) ρ is a positive operator with non-negative eigenvalues.

From the above, it follows that ρ is always Hermitian, i.e., ρ† = ρ. While tr(ρ) = 1 for both

pure and mixed states, only pure states have tr(ρ2) = 1, whereas mixed states have tr(ρ2) < 1.

The identity matrix ρ = 1/2 represents the maximally mixed state with tr(ρ2) = 1/2. Hence

tr(ρ2) is often termed as purity of a quantum state. The representation of the density matrix

can have infinite possibilities, as it depends on the choice of the basis. For instance, take a

single-qubit ensemble in the maximally mixed state ρ = 1/2. A situation like this may occur

if the ensemble has equal amounts of {|0⟩⟨0|, |1⟩⟨1|} or {|+⟩⟨+|, |−⟩⟨−|}, or any number of

other potential combinations. Therefore, given a density matrix it is impossible to determine the

ensemble distribution in a unique way.

1.1.3.4 Elements of density operator

The physical significance of density operator can be better understood by looking at the element

of the density operator. For a pure state in an orthonormal basis

ρrs = ⟨r|ρ|s⟩ =
∑
k,l

ckc
∗
l ⟨r|k⟩⟨l|s⟩ = crc

∗
s, (1.13)

and for a mixed state

ρrs =
∑
i

λi⟨r|λi⟩⟨λi|s⟩ =
∑
i

λi
∑
k,l

cikc
i∗
l ⟨r|k⟩⟨l|s⟩ = crc∗s, (1.14)

where crc∗s denotes the ensemble average. In the eigenbasis of Hamiltonian, the diagonal element

ρrr = |cr|2 (1.15)

9
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represents the population of the state |r⟩. The off-diagonal element

ρrs = crc∗s (1.16)

is called coherence, because it indicates a coherent superposition of state |r⟩ and |s⟩.

1.1.3.5 Reduced density operator

Many quantum systems of interest comprise of two or more subsystems, say 1,2,...N. Such sys-

tems are described in the composite Hilbert space H1 ⊗ H2 ⊗ ...HN , where Hi is a subsystem

Hilbert space of dimension di. In such cases, it might sometimes be more interesting to study

the properties of a subsystem than the whole. A subsystem ρA can be obtained from the parent

composite system ρAB by the partial trace operation which is defined as

ρA = trB (ρAB) , (1.17)

if the composite density operator ρAB can be expressed in the eigenbases of subsystems A and B

as ρAB =
∑

i,j,k,l cijkl|ai⟩⟨aj| ⊗ |bk⟩⟨bl| . By performing the trace over subsystem B, we get

ρA =
∑
i,j,k,l

cijkl|ai⟩⟨aj| tr (|bk⟩⟨bl|) =
∑
i,j,k,l

cijkl|ai⟩⟨aj| ⟨bk|bl⟩ =
∑
i,j,k

cijkk|ai⟩⟨aj|. (1.18)

Similarly we can obtain reduced density matrix ρB = trA (ρAB) =
∑

i,k,l ciikl|bk⟩⟨bl|. The above

definition of reduced density matrices can be verified to hold true since it correctly explains the

outcomes of measurement observables on a subsystem of the composite system [28]. The reduced

states of a pure state composite system can reveal information about quantum correlations - like

entanglement present in the system. A separable pure state will give rise to a reduced state that is

also pure, thereby satisfying the condition tr(ρ2A) = 1 = tr(ρ2B). An entangled state on the other

hand is not separable, and results in a mixed reduced state with tr(ρ2A/B) < 1.

1.1.4 Measurement

We must conduct measurements on a quantum system in order to obtain information on observ-

ables like position, spin, momentum, etc. However, the measurement process itself, such as
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1.1 Quantum information processing

flashing photons, alters the system and leads to its collapse (probabilistically) to an observable

eigenstate. Furthermore, even if the development of the combined system and measuring device

may be unitary, such protocols need connecting the system with a suitable measuring device,

which results in non-unitary (system) dynamics. Measurement phenomena on quantum systems

are described by a collection of positive semi-definite operators {Mm} [28] which act on a state

|ψ⟩ to give an outcome m described by the post-measurement state

|m⟩ = Mm|ψ⟩√
pm

, with the probability pm = ⟨ψ|M †
mMm|ψ⟩. (1.19)

Since the sum of probabilities of all possible outcomes must add to one, i.e.,
∑

m pm = 1,

so the completeness constraint is automatically applied to the measurement operators such that∑
mM

†
mMm = 1.

1.1.4.1 Projective measurements

Projective measurements are special cases of general measurements M when the measurement

operators are Hermitian and orthogonal projectors. The spectral decomposition of this Hermitian

operator gives the eigenstates {|m⟩} with eigenvalues {λm}, and the projective measurement

operator is defined as the projector (Pm) of these eigenstates [28]. Hence,

M =
∑
m

λm|m⟩⟨m| =
∑
m

λmPm. (1.20)

Since the eigenbasis is orthonormal and complete, the projectors are orthogonal to one another,

i.e., PmPn = δmnPm, and
∑

m Pm = 1. The action of the projector corresponding to an outcome

|m⟩ on a general state |ψ⟩ is given by

|ψm⟩ =
Pm|ψ⟩√
pm

, with probability pm = ⟨ψ|Pm|ψ⟩. (1.21)

1.1.4.2 POVM

Positive Operator-Valued Measure (POVM) is a more versatile measurement system that relaxes

the need for measurement operators to be orthogonal to one another [28]. A measure whose val-
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ues are positive semi-definite operators on a Hilbert space is known as a positive operator-valued

measure (POVM) in functional analysis and quantum information science. Quantum measure-

ments defined by POVMs are a generalisation of quantum measurements described by PVMs

(also known as projective measurements), and POVMs are a generalisation of projection-valued

measures (PVM). To put it roughly, a POVM is comparable to a PVM in the same way as a

mixed state is to a pure one. POVMs are required to explain how a projective measurement on

a larger system affects a subsystem, much as mixed states are required to specify the state of a

subsystem of a larger system. They are described using measurement operators as Fm =M †
mMm,

which follow the criteria (a) operators Fm are positive, and (b) satisfy completeness condition via∑
m Fm = 1. Hence, given a POVM operator Fm, the corresponding probability of outcome m

for a system in state |ψ⟩ is p(m) = ⟨ψ|FM |ψ⟩.

1.2 Quantum correlations

One crucial and distinctive aspect of quantum mechanics is quantum correlations. To put it sim-

ply, there are subsystem links that prevent measurement findings from each subsystem from being

described as distinct, non-overlapping values [29]. Numerous quantum computing and informa-

tion processing tasks have demonstrated the importance of such quantum correlations, particularly

entanglement [30, 31]. Of the many quantum correlations, we will briefly describe some types of

quantum correlations and their quantifiers that are used in this work.

1.2.1 Quantum discord

Quantum discord is a different non-classical connection that has been extensively researched [32–

36]. This correlation is characterised in terms of the mutual information in a bipartite system and

was first proposed by Zurek et. al. [37] in 2001. The correlation measure of discord filters out all

classical correlations present in the system, and quantifies only quantum correlations.

Let’s start with the famous Shannon entropy,H(X), which is a measure of a system’s classical

information content and is given by

H(X) = −
∑
i

pilog2(pi) (1.22)
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1.2 Quantum correlations

Figure 1.3: For the (a) classical situation, mutual information is computed in two distinct ways: condi-
tional measurements yield J(A : B) = H(A) − H(A|B), and Shannon entropies of subsystems yield
I(A : B) = H(A) + H(B) − H(A,B). It is I(A : B) = J(A : B) in this instance. In terms of von
Neumann entropy, the quantum mechanical definition states that (a1) I(A : B) = S(A)+S(B)−S(A,B)
contains both classical and quantum correlations, and (a2) conditional measurement yields J (A : B) =
S(A) − S(A|B), which, when maximized over all measurement bases

∏B
i of subsystem B, gives the

total classical correlations in the system. Quantum discord results from the difference between the two
definitions of quantum mechanics.

where {pi} is the probability distribution of the possible outcomes of X . The common informa-

tion that two subsystems A and B share is then referred to as mutual information. It is shown by

the blue-colored area of intersection in Fig. 1.3(a). It is measured mathematically as

I(A : B) = H(A) +H(B)−H(A,B).

Alternatively, one can use conditional entropyH(A|B) = H(A,B)−H(B) = H(A)−H(A : B),

which quantifies the information content unique to A and not shared with B. Hence, mutual
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information can also be given by

J(A : B) = H(A)−H(A|B).

Note that this definition requires measurement of the subsystem B [38] since

H(A|B) =
∑
j

p(bj)H(A|B = bj) ,with

H(A|B = bj) = −
∑
i

p(A = ai|B = bj) log2 p(A = ai|B = bj).

Definitions I(A : B) and J(A : B) are classically equivalent, and give identical values of mutual

information, as shown in Fi.g 1.3(a). However, this is not the case for quantum systems.

In the quantum scenario, information content in a density matrix ρ is quantified by the von

Neumann entropy S(ρ) = −Tr(ρ log2 ρ). For a bipartite quantum system AB, the mutual infor-

mation between A and B can be defined analogous to I(A : B) as

I(A : B) = S(A) + S(B)− S(AB), (1.23)

where S(A), S(B) and S(AB) are von Neumann entropies of subsystems A, B, and the com-

posite system AB respectively. This definition is depicted in the top panel in Fig 1.3(a1). The

alternative definition of mutual information is given by

J (A : B) = S(A)− S(A|B), (1.24)

where the conditional entropy S(A|B) =
∑

j p
B
j S(A|B = bj) is the entropy of subsystem A

conditional to a measurement on subsystem B giving a result bi from the possible outcomes of B,

with probability pBj [37]. This is displayed in Fig. 1.3(a2).

The estimates of J (A : B) can vary depending on the choice of measurement bases, while

I(A : B) is independent of measurement basis. Consequently, The (minimum) difference be-

tween the two ways of evaluating mutual information in Eq. 1.23 and Eq. 1.24 gives the quantum

correlations present in the system, and is called quantum discord. For orthonormal bases {ΠB
i }
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on subsystem B, discord is given by [37]

D(B|A) = I(A : B)−max
{ΠB

i }
J (A : B), (1.25)

1.2.2 Entanglement

In order to understand entanglement, we have to first understand the concept of separability. A

pure quantum state is said to be separable if, in the constituent orthonormal bases {|ai⟩} and

{|bj⟩} of subsystems A and B respectively, |ψAB⟩ =
∑

i ai|ai⟩ ⊗
∑

j bj|bj⟩ [39]. In such a case,

the reduced states are also pure, and are given simply by |ψA⟩ =
∑

i ai|ai⟩ and |ψB⟩ =
∑

j bj|bj⟩.

The definition of separability can be extended to mixed states as

ρAB =
∑
i

ciρ
A
i ⊗ ρBi , with

∑
i

ci = 1, (1.26)

which is essentially a convex sum of tensor product states of constituent subsystems. If a bipartite

quantum state cannot be expressed as a separable (or product) state, it is said to be entangled [39].

There are multiple quantifiers of entanglement in bipartite systems designed based on whether

the composite state of the system is pure or mixed to start with. For a pure state ρAB =

|ψAB⟩⟨ψAB|, if the reduced states ρA, ρB are mixed, then the composite state is necessarily en-

tangled. Hence, purity of reduced states acts as an quantifier for entanglement in pure composite

states, and is also referred to as linear entropy. A related measure of entanglement in pure states

is the entanglement entropy (which is used in this thesis and is explained in further detail below).

For mixed states, measures of entanglement include concurrence, negativity and logarithmic neg-

ativity which is defined based on partial transposition (PPT) criterion [40].

1.2.2.1 Entropy as an entanglement measure

The degree of quantum entanglement between two subsystems that make up a two-part compos-

ite quantum system is measured by the entropy of entanglement, also known as entanglement

entropy. A reduced density matrix ρA = trB[ρAB] expressing knowledge of the state of a subsys-
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tem may be obtained given a pure bipartite quantum state of the composite system ρAB. For each

subsystem, the von Neumann entropy S(ρ) of the reduced density matrix equals the entropy of

entanglement. The von Neumann entropy is given by

S(ρ) = −tr(ρ log2 ρ) ≡ −
∑
i

λi log2 λi, (1.27)

where {λi} are the nonzero eigenvalues of ρ. The von Neumann entropy of a pure state is always

zero. As mentioned previously, if the reduced state of a system ρA = trB[ρAB] after partial

trace is pure, then the composite state is not entangled. For such a state, S(ρA) = 0 = S(ρB).

However, if the reduced state is mixed, then it implies that the parent composite state is entangled.

Unfortunately, entanglement entropy cannot be used as a measure if the composite system is a

mixed state.

1.2.2.2 Negativity as an entanglement measure

One of the many easily calculable metric of quantum entanglement in quantum mechanics is

negativity. It is an indicator that comes from the PPT separability requirement [40]. It has been

demonstrated to be an entanglement monotone [41], making it a suitable entanglement measure

even for the mixed states. Negetivity is given by

N(ρAB) =
||ρTA

AB|| − 1

2
, (1.28)

where ρTA

AB is the partial transpose of the composite state ρAB with respect to subsystem A and

||X|| = tr|X| = tr
√
X†X is the trace norm or the sum of the singular values of the operator

X . Although this concept does not appear in later chapters, it is widely used as an entanglement

measure.

1.3 Ergotropy

Here, we explain “ergotropy”[42], a recently presented idea in quantum thermodynamics. Ac-

cording to thermodynamics, the energy and entropy of a system that is initially out of equilibrium

and connected to work sources determine the maximum amount of work that the system may pro-
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duce. The majority of macroscopic systems exhibit thermodynamic behaviour, evolving close to

a Gibbs state while maintaining nearly constant entropy in response to slowly changing external

potentials [43]. Conversely, a quantum system experiences a unitary change when exposed to

time-dependent external potentials that characterise work sources, and the density matrix cannot

become Gibbsian when beginning from an arbitrary initial state since it has constant eigenvalues

during such a development. In these situations, the maximum quantity of work that the system

may generate is no longer determined by entropy, hence the concept of ergotropy [42] is intro-

duced, which is simply “the maximum amount of work that can be extracted unitarily from an

originally isolated quantum system”. The basis for ergotropy is given by the property of ma-

jorization [44], which asserts that more major states produce more work [43].

Consider a finite system S that can exchange work with external macroscopic sources. This

system is thermally isolated but may involve energy exchanges between its parts. The evolution

of its density operator ρ(t) is then generated by a Hamiltonian H(t) = H + V (t), where the time

dependence of V (t) accounts for work transfer. We call cyclic a process in which S, originally

isolated, is coupled at the time t = 0 to external sources of work, and decouples from them at the

time τ [45]. Thus, the driving variables of the sources are cyclic, and the potential V (t) vanishes

before t = 0 and after τ : V (0) = V (τ) = 0. However, S need not return to its initial state at

the time τ . With the initial state ρ(0) = ρ0 and the system Hamiltonian H being given, we look

for the maximum work Wmax that may be extracted from S for arbitrary V (t). For finite systems,

not only is the entropy S(ρ) is conserved during the evolution, but so are all the eigenvalues of

ρ. In contrast to thermodynamic systems, finite systems keep memory of their initial state and

do not involve any relaxation mechanism. One may therefore expect that the maximal amount

of work Wmax extracted from S is generally smaller than the larger systems that evolve in the

thermodynamic limit, i.e. Wth = E(ρ0)− TS(ρ0) + T lnZ [42], this is the familiar difference of

free energy between the initial and final state, both evaluated with the final temperature T , where

Z = tr(e−βH).

The evolution of ρ is unitary, so that ρ(τ) = Uρ0U
†. We look for the minimum of the final

energyEf = tr(Uρ0U
†H) over all unitary operators U . The variations in U can be parameterized

as δU = δXU , where δX is an arbitrary infinitesimal anti-Hermitian operator. Hence, we find

δEf = tr(δXUρ0U
†H − Uρ0U

†δXH) = tr(δX[ρ(τ), H]). In order to have a stationary Ef ,
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ρ(τ) should commute with H and have the same eigenvalues as ρ0. Let the spectral resolutions

of ρ0 and H0 be

ρ0 =
∑
j

λj|λj⟩⟨λj|, where λj+1 ≥ λj, and

H =
∑
k

ek|ek⟩⟨ek| where ek+1 ≤ ek. (1.29)

where we descend the eigenvalues for ρ0 and ascend forH0 with their corresponding eigenvectors.

With such configuration, the minimum of Ef becomes
∑

j λjej , which can be easily grasped as:

the largest occupation fraction λ1 finally occupies the lowest level, the second largest the second

lowest, and so on. It is reached for

ρ(τ) =
∑
j

λj|ej⟩⟨ej| (1.30)

which is stationary since it commutes with H . Finally, we are now in a position to formulate our

maximum extractable work as

Wmax = E0 − Ef = tr(ρ0H)− tr(ρ(τ)H). (1.31)

1.3.1 Passive states

Before ergotropy was introduced, the idea of passive states was widely accepted as gibbs states

at all temperatures are passive [43, 46], but it gained prominence after that. If the equilibrium

states of a general quantum system are characterized by the condition saying that the systems

are unable to perform mechanical work in cyclic (unitary) processes. This condition is called

“passivity,” which is suggested by the second principle of thermodynamics. In simpler words, a

passive state ρp of a general quantum system initialized as ρ0 is defined as “a state from which no

further work can be extracted by any unitary means”. Thus, ergotropy for the passive state will

be zero Wmax = 0, which directly implies ρp = ρ(τ) Eq. 1.30. For instance, let us consider a
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1.3 Ergotropy

three-level system initialized as

ρ0 = λ1|λ1⟩⟨λ1|+ λ2|λ2⟩⟨λ2|+ λ3|λ3⟩⟨λ3| with, λ1 ≥ λ2 ≥ λ3

H = e1|e1⟩⟨e1|+ e2|e2⟩⟨e2|+ e3|e3⟩⟨e3| with, e1 ≤ e2 ≤ e3.

Let |λ1⟩ = |e1⟩+|e3⟩√
2

, |λ2⟩ = |e2⟩ and |λ3⟩ = |e1⟩−|e3⟩√
2

, following these values if we write ρ0 and

H in energy eigenbasis, we have

ρ0 =


(λ1 + λ3)/2 0 (λ1 − λ3)/2

0 λ2 0

(λ1 − λ3)/2 0 (λ1 + λ3)/2

 , H =


e1 0 0

0 e2 0

0 0 e3

 (1.32)

Figure 1.4: (a) and (b) represents the possible population occupation of the initial state ρ0 with increasing
energy. (c) shows the passive state ρp population occupation.

For all possible values of λ1, λ2 and λ3 the initial state ρ0 does not appear to be in any form of

ascending or descending order in population with increasing energy as shown in Fig. 1.4(a) and

(b), which means there exists a unitary transformation that will transform ρ0 to its passive state ρp

which is nothing but populations arranged in decreasing order with increasing energy in energy

eigenbasis as shown in Fig. 1.4(c).

1.3.2 Ergotropy gap

Up to now, we have only considered a single quantum system for work extraction. Now a genuine

question to ask is what happens to ergotropy if there are two or more than two quantum systems.
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Let’s examine a bipartite system initialized as ρAB, ρA = trB(ρAB) and ρB = trA(ρAB) with

their corresponding Hamiltonians as HAB, HA and HB. Now ergotropy can be obtained in one

of two ways: either locally, where only subsystems are allowed for work extraction using local

unitaries UA⊗UB, or globally, where the complete system is available for work extraction using a

global unitary UAB. Let’s define a quantity called Ergotropy gap as the difference between global

ergotropy and local ergotropies given by

∆ = WAB
max − (WA

max +WB
max) (1.33)

Now ∆ ≥ 0 always, as global operations are capable of extracting more work than local ones,

since state can be locally passive but globally not. Such an enhancing may have two origins: (i) if

our system is in active state, which is ρpA ⊗ ρpB ̸= ρpAB [47] or (ii) if our system is in a completely

passive state [43, 46, 48] but there exist correlations among the subsystems [47, 49].

1.4 NMR experimental setup

In this thesis, we have employed the NMR setup to investigate quantum batteries and many-body

entanglement as an application of ergotropy. Since the 1940s, when Rabi oscillations were dis-

covered, NMR has experienced significant theoretical and experimental advancement. [50]. It

has paved the way for a plethora of new studies in physics, chemistry, biology, and medicine,

including investigations into the magnetic characteristics of materials, the structures of molecules

and proteins, MRI tissue imaging, and more [51–53], a commonly used NMR spectrometer is

shown in Fig. 1.5. NMR is also an excellent platform for implementation of quantum informa-

tion processing tasks [54–56]. In this section, we provide a brief summary of the experimental

setup and its potential applications in the investigation of quantum information and computing

processes.

1.4.1 Nuclear spin as a qubit

Utilising nuclei’s intrinsic spin degree of freedom is a feature of NMR. A spin angular momentum

Î, whose eigenvalue is provided by
√
I(I + 1)ℏ [52], is linked with each spin Î, which might have
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1.4 NMR experimental setup

Figure 1.5: NMR spectrometer.

spin I = 1/2, 1, 3/2, ..., depending on the nucleon configuration in the system.

A non-zero spin has a magnetic moment given by µ̂ = γℏÎ where γ is the gyromagnetic ratio.

A spin-I system when placed in an external magnetic field B̂ = B0ẑ interacts with it via Zeeman

Hamiltonian which is given by

H0 = −µ̂ · B̂ = −γℏB0Iz = ℏω0Iz, (1.34)

where Iz = σz/2 is the z-component of the spin angular momentum, and ω0 = −γB0 is the

Larmor frequency. Since a non-zero spin is like a tiny magnet, when placed in an external field,

it acts as a gyroscope and processes about the field at ω0/2π frequency. For fields of a few Tesla

(typical of commercial NMR spectrometers), the Larmor frequency is of the order of hundreds

of MHz. For a spin-I system, energy eigenvalues of the Hamiltonian are E = −msℏγB0, where

ms = {−I/2,−I/2 + 1, .., I/2} are the magnetic quantum numbers, which forms a 2I + 1 level

system with equal energy gaps ∆E = ℏγB0 = ℏω0.

In NMR we have approximately about 1018 molecules per sample constituting an ensemble

of nuclear spins. Now let’s consider an ensemble of spin-1/2 systems having two energy levels

corresponding to ms = ±1/2. In the absence of an external field, the spin levels |ms = −1/2⟩

and |ms = 1/2⟩ are degenerate, and each spin is oriented randomly. Hence, the net magnetic

moment is zero. When an external field B̂ = B0ẑ is introduced, the degeneracy between different
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Figure 1.6: An NMR sample’s schematic in an external magnetic field. The molecules in a typical sample
are about 1018, and at a temperature T , they settle to the Boltzmann distribution at thermal equilibrium.
In the ground state, a net magnetization M parallel to the external field is created by the fractional surplus
population.

spin levels is lifted, and they try to align along the z-direction. At ambient temperatures, the

thermal energy of the system is much larger than the Zeeman energy splitting. Hence even the

higher energy level is populated, and the system at thermal equilibrium at a temperature T is in

a highly mixed state. The corresponding density matrix is diagonal, with populations in different

energy levels distributed according to the Boltzmann function [52]. The diagonal elements of the

density matrix are given by

ρieq =
e−Ei/kBT∑
i e

−Ei/kBT
, (1.35)

where Ei is the energy of the i-th spin level and kB is the Boltzmann constant. For high tempera-

ture approximation, i.e. ℏω0 << kBT , it can be easily shown that at thermal equilibrium,

ρeq =

1+ϵ
2

0

0 1−ϵ
2

 =
1

2
I + ϵIz (1.36)

where ϵ = ℏγ B0/(2kBT ) is called the purity factor whose magnitude is of the order of 10−5.

The ground state (|ms = 1/2⟩) has a slightly higher population than the higher energy level

(|ms = −1/2⟩), and hence there is a net magnetic moment or magnetization parallel to the exter-

nal applied field, as shown in Fig. 1.6. If we assign |ms = 1/2⟩ ≡ |0⟩ and |ms = −1/2⟩ ≡ |1⟩,

we will have our qubit, which establishes a link between NMR and quantum information process-
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ing.

1.4.1.1 Qubit interactions

Most of the quantum information processing tasks require at least two interacting qubits. In

NMR, interactions naturally present in the system help in this regard. These interactions are of

two types [52] -

(i) spin-spin scalar coupling or J-coupling which is indirectly mediated by electron

(ii) dipolar interactions mediated direct spin-spin coupling through space

which are explained below. Spin with I ≥ 1, called quadrupolar spins or qudit, have asymmetric

electric charge distribution in the nuclei which gives rise to quadrupolar couplings [52].

For the case dealt in this thesis, namely, isotropic liquid, the direct dipole-dipole interactions

average out to zero due to the fast tumbling motion of the spins [52]. However, indirect coupling

also known as J- coupling survives and corresponds to the rotating-frame Hamiltonian given by

(assuming ℏ = 1)

Hint =
∑
i

ωiIzi +
∑
i,j>i

2πJijIi · Ij. (1.37)

with indirect spin-spin J-coupling Jij . Here Ii ·Ij = IxiIxj+IyiIyj+IziIzj . In the weak coupling

limit at high fields, i.e., |Jij| << |ωi − ωj|, under secular approximation [52], Eq. 1.37 becomes

Hint =
∑
i

ωiIzi +
∑
i,j>i

2πJijIziIzj. (1.38)

Note that, in case of hetronuclear spins this approximation is always satisfied since the Larmor fre-

quency difference typically falls in MHz range and J-coupling constants are in Hz. For a two qubit

system the above Hamiltonian has four eigenstates which form the basis {|00⟩, |01⟩, |10⟩, |11⟩}.
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The eigenvalues corresponding to basis states are:

|00⟩ → (ω1 + ω2 + πJ)/2 (1.39)

|01⟩ → (ω1 − ω2 − πJ)/2

|10⟩ → (−ω1 + ω2 − πJ)/2

|11⟩ → (−ω1 − ω2 + πJ)/2

1.4.1.2 Relaxation

No system is isolated in reality. System relaxation results from interactions between all systems

and their environment. Thermal motion causes changes in the magnetic field surrounding spins,

which results in relaxation in NMR [52]. These lead to systemic changes and a loss of coherence.

The dipole moments of surrounding spins as the molecules tumble, which result in variations in

the local fields around spins, are one of the main reasons of relaxation in liquid state NMR. Two

categories can be used to classify the intrinsic relaxation processes:

(i) spin-lattice relaxation (T1) - also known as longitudinal relaxation, The transverse fre-

quency components around Larmor frequency are responsible for longitudinal relaxation [51, 52].

They introduce random transitions as well as relative phases between energy levels which leads

to destruction of coherences and redistribution of populations towards thermal equilibrium on a

timescale often termed as T1.

(ii) spin-spin relaxation (T2) - also known as transverse relaxation, this phenomenon is the

loss of coherence between spins. This type of relaxation occurs due to longitudinal low-frequency

components compared to Larmor frequency. Though these components cannot induce transition,

they introduce random relative phases between energy levels. Consequently, this is an energy-

conserving process and only leads to decay of coherences while populations remain unaltered

on a timescale often termed as T2, usually the transverse relaxation has a shorter life span than

longitudinal relaxation, i.e. T2 < T1.
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1.4.1.3 Chemical shift

In reality, most nuclear spin systems used in experiments are not unbound elements but rather

molecules submerged in a solvent. In this case, the chemical environment surrounding the nucleus

in the molecule causes the local field of a nucleus to be different from that of a free spin. The

effective field surrounding the nucleus is altered by the dispersion of electronic clouds from the

surrounding components, changing the Zeeman Hamiltonian.[51, 52]

H = H0 +Hcs (1.40)

Hcs = ℏγδj · B̂,

where δj is the chemical shift tensor at the site of the j-th spin. At a strong external field B̂ =

B0ẑ, due to rapid tumbling motion of the molecules in liquid samples, this tensor reduces to

an averaged isotropic scalar value δ. Hence with Hcs = ℏγδB0Iz, the above equation becomes

H = −ℏγ(1 − δ)B0Iz, where we can identify the shifted Larmor frequency ω = −γ(1 − δ)B0.

The chemical shift is characteristic of the molecule and helps with addressability of qubits.

1.4.1.4 PFG (Pulsed Field Gradient)

Pulsed field gradients (PFGs) are magnetic fields that change spatially and are used to create

space-dependent phases in the sample as needed. The NMR sample tube is aligned parallel to the

static magnetic field B̂ = B0ẑ, and the gradient is applied along the ẑ direction. This is given by:

B̂(z) = zGz ẑ (1.41)

where Gz is the strength of the gradient. When such a gradient is applied, spins at various loca-

tions along the sample’s length ẑ encounter various local magnetic fields. The transverse com-

ponents of the magnetization vector precess at various Larmor frequencies along the sample’s

length because the spins’ Larmor frequency is exactly proportional to the magnetic field. Thus,

any phase coherence between the transverse components of the magnetization throughout the

sample length is broken during the gradient’s application, so removing the net transverse magne-
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tization over the bulk sample volume. From an information processing point of view, PFGs are

routinely used to destroy coherences, and for coherence order selection and filtering [57–59].

1.5 NMR based quantum information processing

Here, we describe how properties of NMR systems can be used to study quantum information

processing tasks.

1.5.1 Qubit manipulation

The energy gaps between NMR qubit levels, as described in Sec. 1.4.1, are in the range of

hundreds of MHz, which fall under the radio frequency (RF) range. Hence, NMR qubits can be

manipulated by RF fields. A linearly polarized RF field 2B1 cos(ωrf t + ϕ) applied transversely

to the external field can be described by the following time-dependent Hamiltonian [51, 52]

HRF(t) = −γIx{2B1 cos(ωrf t+ ϕ)} = 2ω1Ix cos(ωrf t+ ϕ), (1.42)

where ω1 = −γB1 is effective RF amplitude. The resonance condition is achieved when ωrf =

ω0. Otherwise, the difference between the two is called offset. The linear polarized RF field can

be decomposed into right (Br) and left (Bl) circularly polarized components

Br(t) = B1 [cos(ωrf t+ ϕ)x̂+ sin(ωrf t+ ϕ)ŷ] ,

Bl(t) = B1 [cos(ωrf t+ ϕ)x̂− sin(ωrf t+ ϕ)ŷ] .

respectively, representing fields rotating in the same and opposite directions with respect to the

precession of the nuclei. In the frame rotating with nuclear Larmor frequency, the field Br(t)

is stationary, corresponds to the resonant component, while Bl(t) rotates with twice the Larmor

frequency ω0. Hence, in high-field rotating wave approximation, only Br(t) has effect on the

dynamics of nuclei. Now in the rotating frame of ωrf ,

B0
r = B1 [cos(ϕ)x̂+ sin(ϕ)ŷ] , (1.43)
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In an off resonant case with offset Ω = ω0 − ωrf , an effective field can be defined

Beff =
Ω

γ
ẑ +

ω1

γ
[cos(ϕ)x̂+ sin(ϕ)ŷ] , (1.44)

and accordingly

Heff = ΩIz + ω1 [cos(ϕ)Ix + sin(ϕ)Iy] , (1.45)

Therefore, using propagator U = e(−iHeffτ), desired evolution of the state of the nuclear spin

ensemble can be achieved by careful tuning of RF amplitude and exposure time. Often RF fields

are applied in short bursts with high power kHz, called RF pulse or RF rotation. An RF pulse

achieving a flip angle β = ω1τp can be applied using RF amplitude ω1 for time τp to realize the

required qubit evolution. For example, a π/2 rotation, which equilibrates the populations and

creates coherences starting from the thermal equilibrium state, can be achieved using 25 kHz RF

amplitude for a 10 µs duration.

1.5.2 NMR Quantum gates

Any quantum computing task can be broken down into single qubit and multi-qubit operations.

In this thesis, these are accomplished in NMR by the following -

(i) Single qubit manipulation ↔ RF pulses

(ii) Multi-qubit operations ↔ J coupling evolutions and RF pulses

as explained below.

1.5.2.1 Single qubit gates

The effect of RF pulses, as explained in Sec. 1.5.1, is to bring about rotations of a qubit. This can

be used to apply various gates such as NOT, Hadamard, etc.

X or NOT gate

Consider a single qubit system in thermal equilibrium described by the deviation density matrix

ρ = σz/2. The net magnetization is parallel to the external field. An RF pulse of amplitude
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Figure 1.7: (a) For a duration of τp, a π pulse with amplitude ω1 is applied about the x-axis, rotating
the net magnetization 180◦ from z to −z. A NOT gate (b) π/2 pulse of amplitude ω1 applied for length
τp/2 around the y-axis rotates the net magnetization by 90◦ from z to x, which equalizes population in the
energy levels and causes a population inversion. This is how a pseudo Hadamard gate is implemented.

corresponding to ω1 = −γB1 for duration τp such that the flip angle β = ω1τp = π and phase

ϕ = 0 which translates to the x-axis is given by the operator Rx(π) = exp(−iπIx) where Ix =

σx/2. This pulse acts on each spin to induce a rotation by angle π about the x-axis such that

the net magnetization is rotated by 180◦ from +z to −z as shown in Fig. 1.7(a). In quantum

computation terms, this transforms the state |0⟩ Rx(π)−−−→ |1⟩. The matrix form of the NOT gate is

Rx(π) = exp(−iπIx) = −i

0 1

1 0

 .
The pre-factor i is a global phase and hence can be ignored.

Hadamard gate

The Hadamard gate H = 1√
2

1 1

1 −1

 can be experimentally realized by a sequence of two

pulses (i) π/2 rotation about y-axis (Ry(π/2)), followed by (ii) π rotation about x-axis (Rx(π))

whose matrix form is

Rx(π)Ry(π/2) = exp(−iπIx) exp(−iπ/2Iy) = −i

0 1

1 0

 1√
2

1 −1

1 1

 =
−i√
2

1 1

1 −1

 .
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Again, the global phase −i can be ignored. Often a pseudo Hadamard gate is used instead of

Hadamard gate which is just a Ry(π/2) pulse, as illustrated in Fig. 1.7(b).

1.5.2.2 Multi-qubit gates

Multi-qubit gates can be realized using a combination of RF pulses and evolution under the indi-

rect coupling Hamiltonian given in Eq. 1.38. An NMR pulse sequence to realize a CNOT gate

with the first qubit as control and second qubit as the target can be following (time ordered from

right to left)

UCNOT = R2
y(π/2)U(τ)R

2
−y(π/2)R

2
−x(π/2)R

1
−z(π/2), (1.46)

where U(τ) = exp(−iHτ) with τ = 1/(2J12) is the evolution under the coupling Hamiltonian

H = 2πJ12Iz1Iz2.

1.5.3 PPS (Pseudo-Pure States)

Initialising the system into a desired state, usually a pure state, is one of the fundamental prereq-

uisites for many quantum information processing tasks [60]. NMR spins require highly strong

magnetic fields or extremely low temperatures to create pure states because of their incredibly

low purity factors. Instead, one can prepare pseudo-pure states (PPS) which are of the form

ρpps =

(
1− ϵ

4

)
1+ ϵ|00⟩⟨00|. (1.47)

PPS has a little surplus population in the desired state (|00⟩ in the example above) and a

uniform background population in all states (caught by the identity term) as shiwn in Fig. 1.8.

The dynamics of a PPS is isomorphic to that of the corresponding pure state [6]. This can be

intuitively understood from the form of Eq. 1.47 where identity term remains invariant under

evolution and any interesting dynamics is the result of evolution of the other term with ϵ purity.

Moreover, the identity term does not contribute to the measured NMR signal.

A single qubit system is always in a pseudo-pure state. For two and more qubits, there are

various techniques to prepare PPS including spatial averaging [6], temporal averaging [61], and
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Figure 1.8: (a) Sodium fluorphosphate (NAFP) where spins 19F and 31P constitute a two qubit system
(b) NMR pulse sequences for preparing PPS (|00⟩⟨00|) of NAFP molecule with τPF = 1/(2JPF ) and (c)
Population distribution of a two qubit thermal equlibrium state (d) two qubit pure state (e) two qubit PPS.

logical labelling [7]. We use the spatial averaging technique in this thesis, which uses single

and multi-qubit gate to transfer populations between different spin states. These naturally gen-

erate coherences, which are destroyed using gradients (PFG). For the two-qubit system formed

by 19F and 31P nuclei of sodium fluorophosphate molecule if we start with the thermal state as

ρth = I/4 + ϵP (
γF
γP
I1z + I2z), where ϵP = γPB0/4kBT and γF

γP
≈ 4/

√
3. The identity part

is invariant under the unitary transformations, neither contributes to the NMR signal, and is ig-

nored henceforth. The prepration of PPS obtained by pulse sequence shown in Fig. 1.8(b) can be

understood by using product operator formalism [51] as follows:

1

4
I+ ϵP

[
4√
3
I1z + I2z

]
30Fx−−→1

4
I+ ϵP

[
4√
3

√
3

2
I1z −

4√
3

1

2
I1y + I2z

]
1/2JPF−−−−→1

4
I+ ϵP

[
2I1z +

4√
3
I1xI2z + I2z

]
60F−y , PFG−−−−−−→1

4
I+ ϵP [I1z + 2I1zI2z + I2z]

≡ |00⟩⟨00|. (1.48)
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1.5.4 Measurement in NMR

In NMR, as explained in Sec. 1.4.1, the sample has a net magnetization, which at thermal equi-

librium is aligned parallel to the external field. When an RF pulse is applied to tilt it away from

this direction, it begins to precess about the z-axis. In NMR architecture, RF receiver coils are in

the transverse plane. Hence, as the magnetization precesses, it cuts through these coils generating

a time-varying magnetic flux, which in turn induces an emf in the coils. However, due to inherent

relaxation mechanisms, the measured signal decays with time, giving the free induction decay

(FID) [51, 52]. This FID signal is proportional to

F (t) = tr[ρ(t)(σx + iσy)], (1.49)

which gives the transverse magnetization components. The frequency spectrum is obtained by

taking a Fourier transform of the time-domain FID signal. A schematic of the NMR spectrometer

and components are shown in Fig. 1.9.

In general, for a non-equilibrium state, only single quantum coherence elements of the density

matrix can be observed using the above FID signal [52]. To measure all the elements of a density

matrix, one has to resort to a technique called quantum state tomography [62, 63].
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Figure 1.9: An NMR spectrometer schematic. Inserting the sample through bore (a) places it in an area of
constant external magnetic field B0 produced by a superconducting coil (b). Inside, nearer to the sample,
are the RF coils (c), with their magnetic field direction perpendicular to B0. Preamplifier and amplifier
(d) assist in applying pulses and gathering the sample signal. The frequency spectrum (f) is obtained by
Fourier transforming the FID signal (e) that was obtained from the sample.
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In this thesis, we have experimentally investigated and estimated ergotropy along with its ap-

plications in quantum batteries and entanglement certification, as shown in the flow chart. First

we estimate the battery energy, ergotropy, and establish the quantum advantage in charging the

quantum battery. Next, we have proposed a set of entanglement conditions for multi-qubit sys-

tems by measuring certain thermodynamic quantities. Lastly, in order to extract maximal work

unitarily from an unknown state, we provide a feedback-based quantum method for ergotropy

estimation that directs system dynamics to convert arbitrary initial states into their passive states.

The completeness of this study is demonstrated by examining the charging dynamics of quantum

batteries and ultimately developing a methodology for discharging.

33

https://doi.org/10.1103/PhysRevA.106.042601
https://doi.org/10.1103/PhysRevA.106.042601
https://doi.org/10.1103/PhysRevA.109.L020403
https://doi.org/10.1103/PhysRevA.109.L020403
https://doi.org/10.1103/PhysRevA.109.L020403
https://arxiv.org/pdf/2409.04087
https://arxiv.org/pdf/2409.04087


CHAPTER 2

Nuclear spins as quantum battery

Abstract

Theoretical explorations have revealed that quantum batteries can exploit quantum cor-

relations to achieve faster charging, thus promising exciting applications in future tech-

nologies. Using NMR architecture, here we experimentally investigate various aspects of

quantum batteries with the help of nuclear spin systems in a star-topology configuration.

We first carry out numerical analysis to study how charging a quantum battery depends on

the relative purity factors of charger and battery spins. By experimentally characterizing

the state of the battery spin undergoing charging, we estimate the battery energy as well

as the ergotropy, the maximum amount of work that is unitarily available for extraction.

The experimental results thus obtained establish the quantum advantage in charging the

quantum battery. We propose using the quantum advantage, gained via quantum correla-

tions among chargers and the battery, as a measure for estimating the size of the correlated

cluster. We develop a simple iterative method to realize asymptotic charging that avoids

the oscillatory behavior of charging and discharging. Finally, we introduce a load spin and

realize a charger-battery-load circuit and experimentally demonstrate battery energy con-

sumption after varying the duration of battery storage, for up to 2 min.

Reported in

Jitendra Joshi and T. S. Mahesh, Experimental investigation of a quantum battery using

star-topology NMR spin systems, Phys. Rev. A 106, 042601 (2022).
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2.1 Introduction

2.1 Introduction

Recent advances in quantum technologies are revolutionizing the world with novel devices such

as quantum computers, quantum communication, quantum sensors, and a host of other quantum-

enhanced applications [64, 65]. The latest additions include quantum engines [66, 67], quantum

diode [68, 69], quantum transistor [70], as well as quantum battery, an energy-storing device [71–

73] that is capable of exploiting quantum superpositions [48, 74–78]. While quantum batteries

open up novel applications, they are also exciting from the point of view of quantum thermody-

namics [79–81], a rapidly emerging field that extends thermodynamical concepts to the quantum

regime. It has been theoretically established that quantum batteries can exhibit faster charging in

a collective charging scheme that exploits quantum correlations [74, 75, 82]. Recently quantum

batteries with various models showing quantum advantages have been introduced [83, 84]. They

include quantum cavity [72, 76, 85–91], spin chain [92–98], Sachdev-Ye-Kitaev model [99, 100],

and quantum oscillators [71, 77, 101, 102]. There also have been a few experimental investi-

gations of quantum battery, such as the cavity assisted charging of an organic quantum battery

[103].

Here we describe an experimental exploration of quantum batteries formed by nuclear spin-

systems of different sizes in star-topology configuration. Although, one can consider various

other configurations, we find the star-topology systems to be particularly convenient for this pur-

pose for the reasons mentioned in the review [104]. Using NMR methods, we study various

aspects of quantum battery by experimentally characterizing its state via quantum state tomogra-

phy. Thereby we monitor building up of battery energy during collective charging and establish

the quantum speedup. We also estimate the quantity ergotropy, that quantifies the maximum

extractable work. By numerically quantifying quantum correlation in terms of entanglement en-

tropy as well as discord, we reconfirm the involvement of correlations in yielding the quantum

speedup. We therefore propose using the quantum speed to estimate size of the correlated cluster.

We find this method to be much simpler compared to spatial phase-encoding method [105] or

the temporal phase-encoding method (eg. [106]). Unlike classical batteries, charging of a quan-

tum battery is oscillatory, i.e., the quantum battery starts discharging after reaching the maximum

charge. Recent theoretical proposals to realize a stable non-oscillatory charging were based on
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either adiabatic protocol [107] or shortcut to adiabaticity [108]. Here we propose and demon-

strate a simple iterative procedure to realize asymptotic charging based on the differential storage

times of the charger and battery spins. Finally, we describe implementing the Quantum Charger-

Battery-Load (QCBL) circuit. A similar circuit has recently been theoretically discussed in Ref.

[109]. Using a 38-spin star-system we experimentally demonstrate QCBL circuit with battery

storage up to two minutes before discharging energy on to the load spin

2.2 Objectives

In this project we study quantum battery in star-topology registers formed by central spin which

is symmetrically coupled with non-interacting satellite spins where central spin works as a battery

and the satellite spin works as chargers.

(i) We first establish a quantum advantage of
√
N on fast charging with N being the number of

chargers.

(ii) We estimate the quantity ergotropy, that quantifies the maximum extractable work.

(iii) By numerically quantifying quantum correlation in terms of entanglement entropy as well as

discord, we reconfirm the involvement of correlations in yielding the quantum speedup.

(iv) We therefore propose using the quantum speed-up to estimate size of the correlated cluster.

(v) We propose and demonstrate a simple iterative procedure to realize asymptotic charging based

on the differential storage times of the charger and battery spins.

(vi) Using a 38-spin star-system we experimentally demonstrate QCBL circuit with battery stor-

age up to two minutes before discharging energy on to the load spin.

2.3 Theory

2.3.1 Quantum Battery

The simplest quantum battery (B) consists of a two-level quantum system, like a spin-1/2 particle

placed in a magnetic field (Fig. 2.1). Here, the ground state |0⟩ is modeled as a discharged or

empty battery, while the excited state |1⟩ is modeled as the fully charged battery. The spin battery
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(a) (b)

Figure 2.1: A single spin-1/2 particle in an external magnetic field B0 as a quantum battery. The ground
state (a) and excited state (b) correspond respectively to uncharged and charged states of the battery.

can be charged either directly using an external drive [74, 76] or indirectly via an ancillary spin,

called charger spin (C) [92, 109]. Let us now consider the B-C spin system. Each of the two

spins are governed by their local Hamiltonians HB and HC , respectively, which for the sake of

simplicity, are chosen to have zero ground-state energy. Moreover, we assume that the quantum

system at an initial time t = 0 is in a factorized state

ρBC(0) = |0⟩⟨0|B ⊗ |1⟩⟨1|C , (2.1)

with |1⟩⟨1|C being the excited state of the charger.

We now introduce a coupling Hamiltonian HBC(t) between B and C, in order to transfer as

much energy as possible from the charger to the battery over a finite charging duration τ . Under

the global Hamiltonian of the system BC

H(t) = HB +HC +HBC(t), (2.2)

the joint system evolves as

ρBC(τ) = U(τ)ρBC(0)U
†(τ)

with U(τ) = Te−i
∫ τ
0 dtH(t), (2.3)

where T is the time-ordering operator. The instantaneous state of battery ρB(τ) = TrC(ρBC(τ))
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Figure 2.2: Two charging schemes: (a) parallel charging scheme where a single battery is charged by an
individual charger and (b) the collective charging scheme where a single battery is charged by multiple
chargers.

is obtained by tracing out the charger. The goal is to maximize the local energy of the battery

Emax
B = EB(τ) = Tr(ρB(τ)HB), (2.4)

with the shortest possible charging time τ . For a given maximum energy charged Emax
B , the

charging power is defined as

P = Emax
B /τ . (2.5)

We now discuss two charging schemes, parallel and collective [74, 76, 92] as illustrated in Fig.

2.2. In parallel charging scheme (Fig. 2.2(a)), each of the N batteries is independently charged

to a maximum energy Emax
B /N by one of the N chargers over a duration τ 1. Conversely, in the

collective charging scheme (Fig. 2.2(b)), all the batteries together form a battery-pack that is

charged to a maximum energy Emax
B simultaneously by N chargers over a duration τN . The latter

scheme exploits quantum correlations and hence is more efficient [74, 76]. Let P1 and PN be the

the charging powers of the parallel and collective charging schemes respectively. The quantum

advantage of collective charging is defined as [75]

Γ ≡ PN

P1

=
Emax

B /τN
N(Emax

B /N)/τ 1
=

τ 1
τN

. (2.6)

We may also characterize the state of the battery during charging in terms of ergotropy, or

the maximum work that can be extracted [42]. Following Refs. [42, 43, 78], the ergotropy of a
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battery at time τ is given by

E(ρB(τ)) = EB(ρB(τ))− EB(ρ
p
B(τ)), (2.7)

where EB(ρ) = Tr(ρHB) is the energy of the state ρ and ρpB(τ) is the passive state corresponding

to ρB(τ). A passive state, or a zero-ergotropy state, is the one from which no work can be

extracted by using unitary methods [42, 43]. To construct the passive state, we first spectrally

decompose the state ρB(τ) and Hamiltonian HB as

ρB(τ) =
∑
j

rj|rj⟩⟨rj|, where r1 ≥ r2 ≥ · · · , and

HB =
∑
k

Ek|Ek⟩⟨Ek| where E1 ≤ E2 ≤ · · · . (2.8)

The passive state is diagonal in the energy basis formed by pairing descending order of popula-

tions rj with ascending order of energy Ej levels, i.e.,

ρpB(τ) =
∑
j

rj|Ej⟩⟨Ej|. (2.9)

Note that the energy of the passive state is

EB(ρ
p
B(τ)) =

∑
j

rjEj. (2.10)

For a single spin battery described in Fig. 2.1, the eigenvalues of instantaneous state are of the

form (1± ϵ)/2 where |ϵ| ≤ 1. Therefore,

ρB(τ) =
1 + ϵ

2
|0⟩⟨0|+ 1− ϵ

2
|1⟩⟨1| and

EB(ρB(τ)) = ℏωB
1− ϵ

2
. (2.11)

As long as ϵ ≥ 0, the ground state is still more populated than the excited state, and the battery

remains in the passive state and ergotropy E(ρB(τ)) = 0. After sufficient charging, ϵ becomes
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negative, and the passive state changes to

ρpB(τ) =
1− ϵ

2
|0⟩⟨0|+ 1 + ϵ

2
|1⟩⟨1|,

EB(ρ
p
B(τ)) = ℏωB

1 + ϵ

2
,

and ergotropy E(ρB(τ)) = −ϵℏωB (ϵ ≤ 0). (2.12)

For |ϵ| ≪ 1 we find that the dimensionless ratio

E(ρB(τ))
−ϵEB(ρB(τ))

=
2

1− ϵ
≈ 2. (2.13)

In the following we describe the topology of the spin-systems used in our experiments.

2.3.2 star-topology network

We now consider the star-topology network in which a single central battery-spin uniformly inter-

acts with a set of N indistinguishable charger spins [104] as illustrated in Fig. 2.3 (a). Quantum

battery in this configuration has been studied theoretically very recently [110]. The spin-systems

with N = 3, 9, 12, 18, & 36 studied in this work are shown in Fig. 2.3 (b-f).

We consider the local Hamiltonians for the battery and charger to be

HB = ℏωB(1/2− Sz) and HC = ℏωCIz. (2.14)

Here Sx,y,z represent the x, y, z-spin operators for the battery spin with Larmor frequency ωB,

Ix,y,z =
∑N

i=1 I
i
x,y,z represent the collective x, y, z-spin operators for the chargers with Larmor

frequency ωC = γωB, where γ is the relative gyromagnetic ratio. Following Ref. [77], we choose

the interaction Hamiltonian,

HBC(t) = ℏ2πJ (SxIx + SyIy) , (2.15)

where J ≪ |ωC(B)| is the coupling constant between the battery and the charger spins.

The spin-system is prepared in the thermal equilibrium state, which is in a generalized form
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Figure 2.3: (a) Star-topology configuration showing the central battery spin symmetrically surrounded
by charger spins. (b-f) The star-topology nuclear spin-systems studied in this work. The strength J of
battery-charger interaction for each system is shown with the molecular structure, while other details are
tabulated in (g). Note that all the nuclei considered here (B and C) are spin 1/2 nuclei.

of Eq. 2.1, i.e.,

ρBC(0) = ρB(0)⊗ ρC(0), with

ρB(0) =
1 + ϵ

2
|0⟩⟨0|+ 1− ϵ

2
|1⟩⟨1| and

ρC(0) =

(
1− γϵ

2
|0⟩⟨0|+ 1 + γϵ

2
|1⟩⟨1|

)⊗N

, (2.16)

where ϵ and γϵ are the purity factors of the battery and charger spins respectively. Under the

high-temperature approximation relevant for NMR conditions, ϵ ≈ 10−5.

We evolve the whole system for a duration τ under the total Hamiltonian in the interaction
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Figure 2.4: (a) Battery energy eB versus charging phase θ = 2πJτ for different number N of charger
spins in pure (solid lines) as well as mixed (dashed lines; ϵ = 10−5) state cases. (b) Quantum advantage Γ
versus N for different purity values ϵ.

frame defined by UIF(t) = e−i(HB+HC)t/ℏ. The dimensionless energy of the battery

eB(τ) = EB(τ)/ℏωB = ⟨1|ρB(τ)|1⟩ (2.17)

is related to the normalized polarization of the battery

mB(τ) = ⟨σz⟩ρB(τ)/ϵ via eB(τ) =
1−mB(τ)

2
. (2.18)

For the special case of pure state, i.e., ϵ = 1 and also setting γ = 1, we obtain the state and

dimensionless energy as

ρB(τ) = cos2(
√
Nθ/2)|0⟩⟨0|+ sin2(

√
Nθ/2)|1⟩⟨1| (2.19)

eB(τ) = sin2(
√
Nθ/2) in terms of θ = 2πJτ. (2.20)
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The energy is maximized for θ = π/
√
N at optimal time

τN =
θ

2πJ
=

1

2J
√
N
, ∴ Γ =

τ 1
τN

=
√
N, (2.21)

clearly predicting the quantum speed-up. The battery energy evolution for various numbers of

charger spins are shown in Fig. 2.4 (a). Note that mixed state curves deviate from the pure state

curves for N ≥ 3. Here, while eB exceeds the pure state value of unity, the maximum charging

takes longer duration. The quantum advantage Γ versus number of charger spins for γ = 1 and

various values of ϵ are shown in Fig. 2.4 (b).

2.4 Experiments

2.4.1 Establishing quantum advantage

Our first aim is to establish the quantum advantage described in section 2.3.2 using various sys-

tems shown in Fig. 2.3. The table containing information about the solvent, the relative gyro-

magnetic ratio (γ), and the T1 relaxation time constant for each of the spin systems is shown in

Fig. 2.3 (g). All the experiments were carried out in a 500 MHz Bruker NMR spectrometer at

an ambient temperature of 298 K. The NMR pulse-sequence for the experiments is shown in Fig.

2.5 (a). Starting from thermal equilibrium state, we energize the charger spins by inverting their

populations with the help of a π pulse. This is followed by the charging propagator

UXY (τ/n0) = e−iHBCτ/n0

≈ Y · ZZ · Y † ·X · ZZ ·X†. (2.22)

Here, X(Y ) = e−i(Sx(y)+Ix(y))π/2 and ZZ = e−iSzIzθ/m. Note that for N ≥ 2, [SxIx, SyIy] ̸=

0, and therefore we implement the interaction propagator via integral iterations n ∈ [0, n0] of

UXY (τ/n0) with sufficiently large n0 such that τ/n0 ≪ 1/(2J). Finally, after dephasing spurious

coherences with the help of a pulsed-field-gradient (PFG), we apply a π/2 detection pulse and

measure the battery polarization mB(τ). During the detection period, we decouple charger spins

using WALTZ-16 composite pulse sequence [111].
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Figure 2.5: (a) The NMR pulse sequence for charging quantum battery and measuring its energy. The
wide and narrow rectangular pulses correspond to π and π/2 pulses respectively. The shaped pulse in the
lowest row corresponds to the pulsed-field-gradient (PFG) which dephases the coherences and retains pop-
ulations. (b) The dots correspond to experimentally measured battery energy values eB versus normalized
charging duration τ/τN for the five spin-systems shown in Fig. 2.3.Here the solid lines are spline-fits to
guide the eye. (c) Quantum advantage Γ versus the number N of charger spins showing

√
N dependence.
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Figure 2.6: The dots represent the experimentally estimated ergotropy of the battery-spin versus normal-
ized charging duration τ/τ̄N for all five spin-systems. Here the ergotropy is scaled by ϵℏωBe

max
B (see Eq.

2.13), where emax
B is taken from Fig. 2.5(b) indicated by filled squares. The solid lines in small spin-

systems represent the theoretical fits accounting also for the experimental nonidealities.

The experimentally measured battery energy eB estimated from mB using Eq. 2.18 for all

five spin-systems shown in Fig. 2.3 are plotted versus normalized charging duration τ/τN in

Fig. 2.5 (b). For an ideal pure-state system, we expect the maximum energy storage at τ/τN =

1. On the other hand, for mixed state systems with N ≥ 3, τ/τN slightly overshoots the unit

value. However, in practical systems, the charging dynamics is affected by the experimental

imperfections such as RF inhomogeneity (RFI), off-set and calibration errors, etc. In spite of

these issues, the results shown in Fig. 2.5 (b) for all the systems show a remarkable agreement

with the expected maximum charging duration at τN . The corresponding quantum advantage

Γ for all the systems are plotted versus the number N of charger spins in Fig. 2.5 (c), where

the solid line corresponds to the theoretically expected
√
N function. Clearly, we observe a

significant quantum advantage ranging from about 1.5 to over 6.

We now explain the experimental measurement of ergotropy for the subsystem consisting only

the battery spin. To this end, we carry out the complete quantum state tomography [64] of the

battery spin while tracing out the charger spins using heteronuclear composite pulse decoupling.

After reconstructing the density matrix ρB(τ) we use Eqs. (4.1-2.9) to estimate the ergotropy

value. The dots in Fig. 2.6 represent the experimentally estimated ratio of ergotropy to maximum

energy (see Eq. 2.13) plotted versus the normalized charging time τ/τ̄N . Here the solid lines are
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theoretical fits accounting for experimental nonidealities such as RFI, relaxation effects, etc. As

explained after Eq. 2.11, the battery spin remains in a passive state and exhibits zero ergotropy

until its populations are saturated. Ideally for γ = 1, the saturation occurs at time 1/(4J
√
N)

(follows from Eq. 2.19), while for γ ≥ 1, it occurs earlier. Once the battery-spin populations

begin to invert, the ergotropy ratio starts building up towards the value 2 (see Eq. 2.13) and

reaches its maximum at normalized charging time τ/τ̄N = 1. Thus, once again we observe the

quantum advantage in charging of quantum battery.

2.4.2 Determining size of the correlated cluster

Figure 2.7: Numerically calculated battery energy (with pure and mixed states), entanglement entropy
(for pure state; ϵ = 1, γ = 1), and quantum discord (for mixed state; ϵ = 10−5, γ = 1) versus the
normalized charging duration τ/τ9 for N = 9 star-system involving a single battery spin and nine charger
spins.

It has been shown that quantum correlation plays a key role while charging quantum battery

via collective mode [74]. The same holds true for charging in the star-topology system. In Fig.

2.7, we plot entanglement entropy as well as quantum discord against the normalized charging

time τ/τ 9 for a star-system with N = 9 charger spins. For reference we also show the charging

energy eB for both pure (with ϵ = 1, γ = 1) and mixed state (with ϵ = 10−5, γ = 1). To evaluate

entanglement entropy we traced out charger spins, and evaluated the von Neumann entropy of the

battery state. For evaluating quantum discord, we used the two-spin reduced state obtained by

tracing out all spins except the battery spin and one of charger spins. We find that the maximum

correlation is reached at τ/τ 9 = 0.5, i.e., at half the maximum charging period. Both entangle-

ment entropy and discord vanish at maximum charging period, i.e., τ/τ 9 = 1, and the spins get
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uncorrelated [48, 74]. Since (i) the quantum advantage is linked to the generation of correlated

state [74] and (ii) the maximum charging period depends on the size of the correlated cluster, here

we propose to use Γ2 + 1 as an estimate for size of the correlated cluster. This is justified by the

good agreement between the theory and experiment for all the five systems investigated in Fig.

2.5 (b) and (c). For example, the experimentally obtained value Γ ≈ 6 for TTSS matches with

the correlated cluster of 37 spins.

2.4.3 Asymptotic charging

Figure 2.8: (a) The NMR pulse sequence for asymptotic charging of a quantum battery. (b) Battery energy
eB versus charging duration n∆ for three values of delay ∆. Here the dashed lines represent the fits to
asymptotic charging functions as described in the text. The charging time-constants for these three cases
are plotted in the inset. (c) Battery energy at saturation eB(20∆) (after n = 20 iterations) versus the delay
∆ showing the optimal delay range from 7.5 s to 10 s. Here the dashed line is a spline curve fit to guide
the eye.

We now propose a simple method to avoid oscillatory charging and realize an asymptotic

charging that keeps the quantum battery from discharging. The method relies on the differen-
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tial storage times of the charger and the battery spins, i.e., TB
1 ≫ TC

1 . It involves iteratively

re-energizing the chargers followed by transferring the charge to the quantum battery after a care-

fully chosen delay. The scheme for the asymptotic charging is described by the pulse-sequence

shown in Fig. 2.8 (a). It involves a delay ∆ before energizing the charger followed by charging

the battery. However, unlike the unitary scheme described in section 2.4.1, here the entire process

including waiting time, re-energizing of the battery, and charging is iterated. The experimen-

tally measured battery energy eB of the asymptotic charging with TTSS system are shown by

dots in Fig. 2.8 (b), wherein the dashed lines represent the fits to asymptotic charging functions

eB(n∆) = e∆B(1 − e−n∆/T∆). Note that for TTSS, TB
1 = 115.4 s which is much longer than

TC
1 = 3.3 s (see Fig. 2.3 (g)). The estimated values of the charging time-constants T∆ is plotted

versus ∆ in the inset of Fig. 2.8 (b). It is clear that there is an optimal delay time ∆ for which

we observe maximum charging. Therefore, we monitored the saturation charging, i.e., eB(20∆)

versus the delay time ∆ as shown in Fig. 2.8 (c). For TTSS, we find the optimal delay ranges

from 7.5 s to 10 s, to asymptotically achieve over 85 % charging compared to the simple unitary

method described in section. 2.4.1.

2.4.4 Quantum Charger-Battery-Load (QCBL) Circuit

Now we describe the QCBL circuit consisting of charger (C), battery (B), as well as a load (L).

Here we again use TTSS system, and consider all the proton spins together as charger, the central
29Si spin as the battery, and the peripheral 29Si spin as the load. Given the 5% natural abundance

of 29Si, the probability of both central and one of the four peripheral silicon nuclei to be 29Si

isotope is 0.2%. In this system, the strength of the 29Si-29Si interaction, i.e., JBL = 52.4 Hz.

The QCBL circuit and the corresponding spin labeling are illustrated on the left of Fig. 2.9 (a).

The NMR pulse-sequence for QCBL is shown on the right side of Fig. 2.9 (a). We first charge

the battery (B) as described in Sec. 2.4.1 and switch-off the C-B interactions by decoupling the

charger spins throughout. Subsequently, we can introduce a battery storage duration τs, after

which we apply a Gaussian spin-selective π/2 pulse on L followed by a PFG (G1z). This ensures

that there is no residual polarization of the load (L) spin. We now introduce the discharging

scheme UXY (τ
′) between B and L. Note that, the UXY propagator can be exactly implemented in

the case of two-spin interaction. Finally, we measure the polarizations of both B and L spins after
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(a)

Figure 2.9: (a) The QCBL circuit and its implementation in the 38-spin star-topology system (left) and
the NMR pulse sequence for the QCBL circuit (right). Here the dashed lines are spline curve fits to guide
the eye. (b) The energy of battery (eB) and load (eL) versus discharging parameter JBLτ

′. (c) The energy
of the load (eL) extracted from the battery after a storage time τs. The dashed line is an exponential fit as
discussed in the text.

destroying the spurious coherences using a second PFG Gz2, and thereby estimate their energies

eB and eL respectively. The experimental results of eB and eL are plotted versus JBLτ
′ in Fig.

2.9 (b). In our experiment, the load spin is beginning from a maximally mixed state instead of the

ground state. Therefore, eL starts with a value around 0.5 before raising towards the maximum

value of 1.0 for JBLτ
′ = 0.5. At this value of JBLτ

′, we vary the battery storage time τs and

monitor the load energy eL. The results are shown in Fig. 2.9 (c). As expected, the data fits to an

exponential decay function e−τs/Ts (dashed line in Fig. 2.9 (c)) with an estimated battery storage

time-constant Ts ≈ 200 s. This completes the demonstration of QCBL circuit.
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2.4.5 Effects of Dissipation on Quantum Battery Performance

Quantum batteries interact with their surrounding environment and are thus best modelled as

open quantum systems. Such interactions introduce dissipation, which can manifest as amplitude

damping, phase noise (dephasing), and thermal fluctuations [28, 112].

Impact on Energy Storage and Charging Dynamics

• Energy leakage: Dissipative processes cause energy loss into the environment, reducing

the total stored energy and the extractable work (ergotropy) of the battery [113].

• Damped charge oscillations: Coherent charging oscillations decay over time, slowing the

rate of energy accumulation [114].

• Finite equilibrium energy: In the long-time limit, dissipation drives the system toward

thermal equilibrium, capping the maximum achievable stored energy regardless of charger

drive strength [115].

Collective and Engineered Dissipative Effects

• Collective robustness: In many-body battery setups, collective effects can preserve ad-

vantages in charging power even in the presence of dissipation—and may improve with

increasing system size [116].

• Reservoir-engineered enhancement: Carefully engineered dissipation can stabilize co-

herences and even accelerate charging, converting noise into a beneficial resource [117].

Mathematical Framework Open-system dynamics are modeled using the Lindblad master

equation:

ρ̇ = − i

ℏ
[H, ρ] +

∑
i

γi

(
LiρL

†
i −

1

2
{L†

iLi, ρ}
)
.

Here, {Li} are jump operators representing dissipative interactions, and γi are decay rates [112].
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2.5 Summary and outlook

Considering the potential applications of quantum technologies, it is of great interest to study

energy storage and usage at the quantum level. In this context, there is a significant contempo-

rary interest in studying quantum battery. We investigated various aspects of quantum battery

using nuclear spin systems in star-topology molecules in the context of NMR architecture. We

first theoretically compared the efficiency of the collective charging scheme (involving quantum

correlation) with parallel (classical) scheme.

Using NMR methods, we experimentally studied collective charging scheme in a variety of

spin-systems, each having a single battery spin and a set of charger spins whose numberN ranged

between 3 and 36. By measuring the polarization of the battery spin, we estimated the battery en-

ergy and thereby established the quantum advantage Γ =
√
N of the collective charging scheme.

An important parameter to characterize a quantum battery is ergotropy, which quantifies the

maximum amount of work that can be extracted from a quantum system via unitary methods. For

each spin-system, we performed the experimental quantum state tomography and estimated the

ergotropy of the battery spin and its evolution during charging. We observed the
√
N quantum

advantage in ergotropy as well.

By numerically evaluating entanglement entropy and quantum discord for star-systems, we

reconfirmed the established fact that the quantum advantage is realized via quantum correlation.

Therefore, we proposed using Γ2 + 1 as an estimate for the size of the correlated cluster. In

particular, for a 37 spin-system, we obtained an experimental value of Γ ≈ 6, which in this case

matched well with the expected number.

We then addressed the issue of oscillatory charging wherein the battery starts discharging

after overshooting the optimal charging duration. To this end, we proposed a simple asymptotic

charging method that involves iteratively re-energizing the charger with a suitable delay. We

experimentally demonstrated asymptotic charging and determined the optimal delay range.

Finally, we introduced a load spin to which the battery can deposit its energy after a suitable

storage time, thus completing the complete charger-battery-load circuit. Using a 38-spin system,

we showed that the battery spin can store energy for up to two minutes and yet was able to transfer

the stored energy to the load spin.
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We believe this work paves the way for further methodology developments towards the prac-

tical aspects of quantum batteries. Such developments may also contribute towards better under-

standing of quantum thermodynamics and its applications. One may also envisage an advanced

circuit involving multiple elements such as quantum diodes, quantum transistors, and quantum

heat engines, in addition to quantum batteries.
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Verification of many-body entanglement in NMR

Abstract

The phenomenon of quantum entanglement underlies several important protocols that en-

able emerging quantum technologies. Entangled states, however, are extremely delicate

and often get perturbed by tiny fluctuations in their external environment. Certification

of entanglement is therefore immensely crucial for the successful implementation of pro-

tocols involving this resource. In this work, we propose a set of entanglement criteria

for multi-qubit systems that can be easily verified by measuring certain thermodynamic

quantities. In particular, the criteria depend on the difference in optimal global and local

works extractable from an isolated quantum system under global and local interactions,

respectively. As a proof of principle, we demonstrate the proposed scheme on nuclear spin

registers of up to 10 qubits using the Nuclear Magnetic Resonance architecture. We pre-

pare noisy Bell-diagonal state and noisy Greenberger–Horne–Zeilinger class of states in

star-topology systems and certify their entanglement through our thermodynamic criteria.

Along the same line, we also propose an entanglement certification scheme in many-body

systems when only partial or even no knowledge about the state is available.

Reported in

Jitendra Joshi ,Mir Alimuddin, T S Mahesh and Manik banik, Experimental verification

of many-body entanglement using thermodynamic quantities, Phys. Rev. A 109, L020403.

3.1 Introduction

Quantum entanglement, identified as a puzzling feature of multipartite quantum systems [118–

121], plays the pivotal role in a number of important quantum information protocols [122–128]
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(see also [129]). In quantum systems involving more than two parts entanglement appears in

different inequivalent and exotic forms [130, 131], that have been proved to be useful in several

distributed protocols [132–141]. However, entangled states are fragile and easily lost by external

perturbations. Successful implementation of the protocols involving entanglement, therefore,

demands faithful certification of entanglement. Although the generic separability problem is

known to be extremely hard even for bipartite systems [142], negative-partial-transposition (NPT)

criterion [40, 143] and sometimes measurement of entanglement witness operator [144] become

useful for certifying entanglement. On the other hand, there exist entropic quantities that also

serve the purpose of entanglement certification [145, 146]. However, these entropic quantities are

not directly measurable in experiments, and calculating the value of witness operator & evaluating

NPT-ness of a state demands complete tomographic knowledge which is practically impossible

when large number of subsystems are involved.

During the recent past, in a completely different approach, researchers are trying to identify

operationally motivated thermodynamic quantities that can capture the signature of entanglement

in multipartite quantum systems [47, 147–152]. In this work we show that suitably defined func-

tions of such a thermodynamic quantity, namely the ergotropic work, can serve as bona-fide

entanglement certifiers for generic N -qubit systems. The optimal amount of work extractable

from an isolated quantum system by keeping its entropy unchanged is known as ergotropic work

[153]. Depending upon whether a many-body quantum system is addressed globally or its parts

are addressed separately, different kinds of ergotropic works can be extracted. Interestingly, en-

tanglement of the initially prepared multipartite state keeps it footprints in the difference of these

global and local ergotropic works. Furthermore, while extracting work one might infer the spec-

tral of the state in question. Depending on the available information about the spectral of the

global state and its marginals we propose several entanglement certifiers. As proof of principle,

we implement the proposed thermodynamic entanglement criterion on nuclear spin registers of

up to 10 qubits via Nuclear Magnetic Resonance (NMR) architecture. In particular, the star-

topology systems allow preparation of Greenberger–Horne–Zeilinger (GHZ) class of states in

large registers [154–156]. We prepare two-qubit Bell diagonal state and noisy states compris-

ing of singlet/GHZ state and white noise, and certify their entanglement through our proposed

criteria.
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3.2 Objectives

In this project we establish an entanglement certification protocol for multi-qubit system and tes-

tify its validity using nuclear spin qubits.

(i) Using thermodynamic quantities we first establish an entanglement certification protocol for

multi-qubit system analytically.

(ii) We implement the proposed thermodynamic entanglement criterion on nuclear spin registers

of up to 10 qubits via NMR architecture.

(iii) We prepare two-qubit Bell diagonal state and noisy states comprising of singlet/GHZ state

and white noise, and certify their entangle- ment through our proposed criteria.

3.3 Theory

3.3.1 Majorization based entanglement criteria

In this section we briefly review the majorization based entanglement criteria as relevant to the

present work. The concept of majorization has been extensively studied in mathematics [157],

and its applications span across various domains, including quantum information theory. For

instance, majorization plays a crucial role in detecting bipartite entanglement (through Nielsen-

Kempe criteria [158]), quantum state transformation [159–161], quantum thermodynamics [162],

and more. Here, we shortly recall the concept of majorization. We will denote a probability

distribution {pi}n−1
i=0 as a vector p⃗ ≡ {pi}n−1

i=0 ∈ Rn with the elements arranged in decreasing

order, i.e., pi+1 ≥ pi, ∀ i ∈ {0, · · · , n− 1}.

Definition 1 A probability distribution p⃗ majorizes another probability distribution q⃗, denoted as

p⃗ ≻ q⃗, if and only if

k∑
i=0

pi ≥
k∑

i=0

qi, ∀ k ∈ {0, · · ·n− 2}; &
n−1∑
i=0

pi =
n−1∑
i=0

qi. (3.1)

If dimensions of the two vectors are not same extra zeros need to be appended to check their

majorization relation.
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Figure 3.1: Entanglement in three qubit noisy GHZ states: The diagram illustrates various types of en-
tanglement within three qubit systems. The large blue disc represents the complete state space of the
three qubit system. The subset S[X|Xc], where X ∈ 1, 2, 3, denotes a convex set that encompasses
states separable across the partition of X versus Xc. A state is considered bi-separable if it resides within
CovHul{S[1|1c],S[2|2c],S[3|3c]}. On the other hand, if a state can be expressed as a convex combina-
tion of tripartite product states it is called fully separable. It is worth noting that the intersecting region
∩3
X=1S[X|Xc] is separable across all partitions. Interestingly, it is known that the set of fully separable

states is a strict subset of ∩3
X=1S[X|Xc] [32]. In this analysis, we examine the entanglement region of

three qubit noisy GHZ states. These states are fully separable if and only if 0 ≤ p ≤ 1
5 . For 1

5 < p ≤ 3
7 ,

the states are bi-separable but only reside in the green region, which re-establishes the fact that the set
CovHul{S[1|1c],S[2|2c],S[3|3c]} strictly contains ∪3

X=1S[X|Xc]. Conversely, states are genuinely en-
tangled if and only if p > 3

7 .

Definition 2 A quantum state ρ ∈ D(X) majorizes another quantum state σ ∈ D(Y), denoted as

ρ ≻ σ, if and only if spectral vector p⃗ρ of the state ρ majorizes the spectral vector p⃗σ of the state

σ, i.e., p⃗ρ ≻ p⃗σ.

Interestingly, Nielsen and Kempe provided a useful separability criteria based on majorization

[158].

Nielsen-Kempe criteria: Any bipartite separable state ρAB ∈ D(XA ⊗ YB) satisfies

p⃗ρA ≻ p⃗ρAB
, & p⃗ρB ≻ p⃗ρAB

. (3.2)

Here ρA := TrB[ρAB] and ρB := TrA[ρAB]. Violation of any one of these criteria implies the

state ρAB is entangled. This condition can also be applied to certify entanglement across any

bipartition of a multipartite state ρA1···AN
∈ D

(
⊗iCdi

)
. Recall that, S[X|Xc] denotes the set

to states that are separable across X-vs-Xc cut, with X containing κ parties and Xc containing
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the remaining parties; and Nielsen-Kempe criteria can be applied by considering the global state

ρA1···AN
and the parts ρX & ρXc . A state is genuinely entangled if it lies outside the convex hull

(CovHul) of all biseparable states. For instance, consider the N -qubit noisy GHZ states

ρ(λ,N) = λ|ψ⟩⟨ψ|GHZ + (1− λ)
I

2N
, (3.3)

where |ψ⟩GHZ = 1√
2
|0⟩⊗N + 1√

2
|1⟩⊗N and λ ∈ [0, 1]. The states in this class are fully separable if

and only if 0 ≤ p ≤ 1
1+2N−1 [163], and genuinely entangled if and only if 1−21−N

2−21−N < p ≤ 1 [164].

Using Nielsen-Kempe criteria it can be concluded that the state exhibits entanglement across the

(N − 1)-vs-1 partition when the value of p > 1
1+2N−1 . In the intermediate region, specifically

when 1
1+2N−1 < p ≤ 1−21−N

2−21−N , the state is observed to be bi-separable across the (N − 1)-vs-1

partition. Nevertheless, due to the symmetrical nature of this class, all the (N −1)-vs-1 partitions

exhibit entanglement but not genuine entanglement (refer to Fig. 3.1).

3.3.2 A: State dependent thermodynamic criteria of entanglement

State of an N -qubit system is described by a density operator ρA1···AN
∈ D

(
(C2)⊗N

)
; where

D(H) denote the set of positive trace-one operators acting on the Hilbert space H. A state

is called fully separable if it is a probabilistic mixture of fully product state, i.e., ρA1···AN
=∑

i pi

(⊗N
j=1 |ψi

Aj
⟩⟨ψi

Aj
|
)

, with |ψi
Aj
⟩ ∈ C2

Aj
≡ C2. States lying outside the set of fully sepa-

rable states are entangled. However, different kinds of entanglement are possible in multi-qubit

systems. Let S[X|Xc] denotes the set of states separable across X-vs-Xc bipartite cut, where X

contain κ parties together and Xc contains the remaining parties; κ ∈ {1, · · ·N −1}. States lying

outside S[X|Xc] contains entanglement across X-vs-Xc bipartition.

When an isolated such system evolves from an initial state ρ to a lower energy state σ, the

difference in energies can be extracted as work. Study of this topic dates back to late seventies

[46, 165] and it gains renewed interest in the recent past [166–169]. Consider an N -qubit system

governed by non-interacting Hamiltonian H =
∑N

l=1 H̃l, where H̃l := I1 ⊗ · · · ⊗ Il−1 ⊗ Hl ⊗

Il+1 ⊗ · · · ⊗ IN , with Hl =
∑1

i=0(El + iαl)|i⟩⟨i| and |0⟩ & |1⟩ being the energy eigenkets with

respective eigenvalues El and El + αl; Ij be the identity operator on jth qubit. Evolution from

the initial state to final state is governed through a cyclic unitary U(τ) generated by switching
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on a time dependent interaction. The optimally extractable work, called ergotropy, amounts to

W (ρ) = Tr [ρH] − minU(τ) Tr
[
U(τ)ρU †(τ)H

]
, where optimization is considered over all uni-

taries. As it turns out during optimal work extraction the system evolves to the passive state ρP ,

and accordingly we have, W (ρ) := E(ρ)−E(ρP ) = Tr [ρH]−Tr[ρPH] [46, 165]. Passive state

is the lowest energetic state with spectral identical to the initial state. Moreover, it is diagonal in

energy basis where higher energy states are lessly populated. In multipartite scenario different

parts of the system can be probed separately leading to several inequivalent configuration for work

extraction. For instance, in the X-vs-Xc configuration, with X containing κ parties together, the

optimal extractable work from X subsystem is given by, W[κ](ρX) := Tr[ρXHX ] − Tr[ρPXHX ],

where ρX := TrXc(ρ) ∈ D((C2)⊗κ), ρ ∈ D((C2)⊗N), HX is the Hamiltonian of the subsystem

X , ρPX is the passive state corresponding to ρX , with W[N ](ρ) simply denoted as W (ρ).

We will denote the spectral for a generic N -qubit state ρ as t⃗ρ ≡ {tj}2
N−1

j=0 , arranged in de-

creasing order. System’s Hamiltonian H can be re-expressed as H =
∑2N−1

j=0 (Eg + nj)|ej⟩⟨ej|,

where |e0⟩ = |0⟩⊗N is the ground state with energy value Eg =
∑N

l=1El, and the energy eigen-

values are arranged in increasing order, i.e. nj+1 ≥ nj, ∀ j, with n0 = 0. The highest exited state

|e2N−1⟩ = |1⟩⊗N has energy value Eg +
∑N

l=1 αl. Spectral of the subsystem X will be denoted as

x⃗ρX ≡ {xj}2
κ−1

j=0 ,with its Hamiltonian re-expressed as HX =
∑2κ−1

j=0 (EX
g + mj)|fj⟩⟨fj|. While

extracting work in X-vs-Xc configuration, we can evaluate the thermodynamic quantity

∆X|Xc := W (ρ)−W[κ](ρX)− E(ρXc) + EXc

g . (3.4)

Here the first three terms are state dependent and their values can be evaluated through experi-

ment; the last term designates the ground state energy of the Hamiltonian of the Xc part. We are

now in a position to provide our thermodynamic entanglement criteria.

Theorem 1 An N -qubit state separable across X-vs-Xc bipartition satisfies

∆X|Xc ≤
2κ−1∑
i=1

(mi −m1)xi +

2N−1∑
i=1

(m1 − ni)ti := δGL
X|Xc , (3.5a)

∆X|Xc ≤
2κ−2∑
i=1

(mi − ni)ti +

2N−1∑
i=2κ−1

(m2κ−1 − ni)ti := δGX|Xc , (3.5b)

where, mi+1 ≥ mi for i ∈ {0, 2κ − 1}, ni+1 ≥ ni for i ∈ {0, 2N − 1}, and m2κ−1 =
∑κ

i=1 αi.
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proof : The quantity ∆X|Xc in Eq.(3.4) reads as

∆X|Xc = {Tr[ρH]− Tr[ρpH]} − {Tr[ρXHX ]− Tr[ρpXHX ]}

− E(ρXc) + EXc

g

=
2κ−1∑
i=0

mjxj −
2N−1∑
i=0

njtj + EXc

g + EX
g − Eg

∆X|Xc =
2κ−1∑
i=1

mjxj −
2N−1∑
i=1

njtj. (3.6)

According to Nielsen-Kempe separability criteria a state separable across X-vs-Xc cut satisfies

ρX ≻ ρ, i.e.,

x0 ≥ t0, ⇒
2κ−1∑
i=1

xi ≤
2N−1∑
i=1

ti . (3.7)

Substituting Eq.(3.7) in Eq.(3.6) we obtain

∆X|Xc ≤
2κ−1∑
i=1

(mi −m1)xi +
2N−1∑
i=1

(m1 − ni)ti := δGL
X|Xc .

This is the entanglement criterion (2a) of Theorem 1. Evaluation of this criterion requires in-

formation about the spectral of the global state as well as spectral of the X-marginal. One can,

however, achieve a entanglement criterion depending on the global spectral only. For that, rewrite

Eq.(3.6) as

∆X|Xc =
2κ−1∑
i=1

mjxj +
2κ−1∑
j=1

(mj −mj−1)
2κ−1∑
i=j

xi −
2κ−1∑
j=1

(mj −mj−1)
2κ−1∑
i=j

xi −
2N−1∑
i=1

njtj .
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Substituting the separability condition
∑2κ−1

i=j xi ≤
∑2N−1

i=j ti we obtain,

∆X|Xc ≤
2κ−1∑
i=1

mjxj +
2κ−1∑
j=1

(mj −mj−1)
2N−1∑
i=j

ti −
2κ−1∑
j=1

(mj −mj−1)
2κ−1∑
i=j

xi −
2N−1∑
i=1

njtj

=
2κ−1∑
j=1

(mj −mj−1)
2N−1∑
i=j

ti −
2N−1∑
i=1

njtj

=
2κ−2∑
i=1

(mi − ni)ti +
2N−1∑
i=2κ−1

(m2κ−1 − ni)ti

:= δGX|Xc .

This is the condition (2b) of Theorem 1; and this completes the proof. Violation of any of the

conditions in Theorem 1 certifies entanglement across X−vs−Xc bipartition.

Note that, the criterion (2a) and the criterion (2b) help us to detect entanglement at X-vs-Xc

cut in the following way. For a given state ρ, if the values of thermodynamic quantity ∆X|Xc of

Eq.(3.4) exceeds the separability bound δGL
X|Xc then the state is entangled, and the thermodynamic

criteria turns out to be equivalent to some conditions of Nielsen-Kempe criteria:

2κ−1∑
i=1

mjxj −
2N−1∑
i=1

njtj >
2κ−1∑
i=1

(mi −m1)xi +
2N−1∑
i=1

(m1 − ni)ti

⇒
2κ−1∑
i=1

xi >
2N−1∑
i=1

ti ⇒ x0 < t0. (3.8)

Please note that, examining condition (3.5a) requires knowledge of the global and local spec-

trals t⃗ρ and x⃗ρX . Quite interestingly this thermodynamic criterion turns out to be a special case

of Nielsen-Kempe entanglement criterion [158] (see Remark 1. The separability bound δGX|Xc in

(3.5b) depends only on the global spectral of the given state (and hence the superscript ‘G’) and

generally turns out to be a weaker than (3.5a).

Remark 1 For the N -qubit noisy GHZ state of Eq. (3.3) entanglement across X-vs-Xc biparti-

tion can be certified by comparing the values of ∆X|Xc and δGL
X|Xc . As it turns out according to

this test the state is entangled for λ > λGL
κ := 2N−κ−1

2N−1+2N−κ−1
, where the X subsystem contains
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Figure 3.2: A plot of global and local spectral dependent entanglement threshold (λGL
κ ) across X-vs-Xc

bi-partition versus the number of subsystems (κ) in the X part.

κ qubits. Important to note that the bound λGL
κ depends on the value of κ. As more subsystems

are considered in the X part, the criteria will encompass a broader range of entanglement, as

illustrated in Fig. 3.2. In the present example, our criteria will encompass the entire range of

entanglement, just like the Nielsen-Kempe criteria, when we choose κ = N − 1.

Important to note that likewise Nielsen-Kempe criteria criterion, (2a) of Theorem 1 is in-

dependent of the Hamiltonian of the given system. However, as evident from Eq.(3.7) and the

separability bound (2b), entanglement detection condition explicitly depends on the Hamiltonian

(except for δG1|1c , since it becomes equal to δGL
1|1c) as shown below,

2κ−1∑
i=1

mixi −
2N−1∑
i=1

niti >
2κ−2∑
i=1

(mi − ni)ti +
2N−1∑
i=2κ−1

(m2κ−1 − ni)ti

⇒
2κ−1∑
i=1

mixi >
2κ−2∑
i=1

miti +m2κ−1

2N−1∑
i=2κ−1

ti. (3.9)

3.3.3 B: State independent thermodynamic criteria of entanglement

Thermodynamic criteria provided in the Theorem 1 are spectral dependent and therefore entangle-

ment certification through this criteria demands knowledge about the state in question. Next we

will show that one can in-fact obtain spectral independent entanglement criterion, albeit weaker

than spectral dependent criterion. But, the advantage is that one can invoke this state independent

criterion to test entanglement of an unknown state. Such criteria generally depends on the Hamil-
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tonian as well as the number of parties involved in the X-vs-Xc partition. Since it is difficult to

analyze the most generic case in one go, in the following we analyze different systems one after

another.

3.3.3.1 Two-qubit system

Consider a two-qubit system governed by the Hamiltonian

H = H1 ⊗ I+ I⊗H2, (3.10)

Proposition 1 Any separable state of a two-qubit system governed by the Hamiltonian H =

H1 ⊗ I+ I⊗H2 satisfies the condition

∆1|2 ≤ max{(α1 − α2)/2, 0} := δI1|2.

Here, Hl :=
∑1

i=0(El + iαl)|i⟩⟨i|, for l = 1, 2.

proof : In this case criterion (2b) of Theorem 1 boils down to

∆1|2 ≤
3∑

i=1

(m1 − ni)ti. (3.11)

Depending upon the values of α1 and α2 several cases are possible which we analyze below.

(C-I) α1 > α2 > 0: In this case we have, m1 = α1, n1 = α2, n2 = α1, n3 = α1 + α2, and

accordingly condition (3.11) becomes

∆1|2 ≤ (α1 − α2)t1 − α2t3. (3.12)

As the global spectral t⃗ ≡ {ti}3i=0 are arranged in decreasing order, in the above inequality

maximization occurs at t⃗ ≡ {1
2
, 1
2
, 0, 0}; and therefore we have the spectral independent

criterion

∆1|2 ≤
α1 − α2

2
= δI1|2. (3.13)

(C-II) α1 = α2 = α > 0: Here we have m1 = α, n1 = α, n2 = α, n3 = 2α, and accordingly
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condition (3.11) becomes

∆1|2 ≤ −αt3. (3.14)

In this case maximization occurs at t⃗ ≡ {t0, t1, t2, 0} and thus we have

∆1|2 ≤ 0 = δI1|2. (3.15)

(C-III) 0 < α1 < α2: m1 = α1, n1 = α1, n2 = α2, n3 = α1 + α2; and condition (3.11) reads as

∆1|2 ≤ −(α2 − α1)t2 − α2t3. (3.16)

As maximization occurs at t⃗ ≡ {t0, t1, 0, 0}, we have

∆1|2 ≤ 0 = δI1|2. (3.17)

Combining (3.13), (3.15), and (3.17), we therefore have

∆1|2 ≤ δI1|2 = max

{
α1 − α2

2
, 0

}
. (3.18)

This completes the proof.

3.3.3.2 Three-qubit system

Consider a 3-qubit system with Hamiltonian

H = H1 ⊗ I⊗ I+ I⊗H2 ⊗ I+ I⊗ I⊗H3, (3.19)

with Hi =
∑1

j=0(Ei + jαi)|j⟩⟨j| for i ∈ {1, 2, 3}, and αi > 0 ∀ i. Depending upon the values of

{αi}3i=1 and depending on the bipartitions considered several cases are possible. In the following,

we will analyze the cases relevant to our experiment.

Proposition 2 Consider a 3-qubit system governed by the Hamiltonian (3.19). Any state of this
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system separable across 1-vs-23 bipartition satisfies the condition

∆1|23 ≤ 0 := δI1|23, when α1 < α2 = α3 := α (3.20a)

∆1|23 ≤
α− α3

2
:= δI1|23, when α1 = α2 = α > α3. (3.20b)

proof : In this case, across 1-vs-23 cut the criterion (2b) of Theorem 1 reads as

∆1|23 ≤
7∑

i=1

(m1 − ni)ti . (3.21)

(C-I) When α1 < α2 = α3 = α, we have m1 = α1, n1 = α1, n2 = n3 = α, n4 = n5 =

α + α1, n6 = 2α, n7 = 2α + α1, and accordingly above becomes

∆1|23 ≤ −[(α− α1)(t2 + t3) + α(t4 + t5) + (2α− α1)t6 + 2αt7]. (3.22)

Since the function f := (α − α1)(t2 + t3) + α(t4 + t5) + (2α − α1)t6 + 2αt7 is a linear

in t⃗ ≡ {ti}7i=0, and since spectral are arranged in decreasing order, it is evident that f will

take minimum value 0 at t⃗ ≡ (1, 0, 0, 0, 0, 0, 0, 0). This proves the claim

∆1|23 ≤ 0 = δI1|23. (3.23)

(C-II) Similarly, for α1 = α2 = α > α3 we have m1 = α, n1 = α3, n2 = n3 = α, n4 = n5 =

α + α3, n6 = 2α, n7 = 2α + α3, and accordingly condition (3.21) becomes

∆1|23 ≤ (α− α3)t1 − α3(t4 + t5)− αt6 − (α + α3)t7. (3.24)

In this case the function g = (α− α3)t1 − α3(t4 + t5)− αt6 − (α+ α3)t7 takes maximum

value at t⃗ ≡ (1/2, 1/2, 0, 0, 0, 0, 0, 0), which further imply

∆1|23 ≤
α− α3

2
= δI1|23.

This completes the proof.
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Proposition 3 Consider a 3-qubit system governed by the Hamiltonian (3.19). Any state of this

system separable across 12-vs-3 bipartition satisfies the condition

∆12|3 ≤
α1

4
:= δI12|3, when 0 < α1 < α2 = α3 := α; (3.25a)

∆12|3 ≤
α− α3

4
+
α

4
:= δI12|3, when α1 = α2 = α > α3 > 0 and α3 ≥

2

3
α; (3.25b)

∆12|3 ≤
α− α3

2
+
α

6
:= δI12|3, when α1 = α2 = α > α3 > 0 and α3 ≤

2

3
α. (3.25c)

proof : Criterion (2b) of Theorem 1 boils down to

∆12|3 ≤
3∑

i=1

(mi − ni)ti +
7∑

i=4

(m3 − ni)ti. (3.26)

(C-I) For 0 < α1 < α2 = α3 = α, we have m1 = α1,m2 = α,m3 = α + α1, n1 = α1, n2 =

n3 = α, n4 = n5 = α + α1, n6 = 2α, n7 = 2α + α1, and accordingly condition (3.26)

becomes,

∆12|3 ≤ α1t3. (3.27)

As maximization occurs at t⃗ ≡ {1/4, 1/4, 1/4, 1/4, 0, 0, 0, 0}, we have

∆12|3 ≤
α1

4
= δI12|3. (3.28)

(C-II) For 0 < α1 < α2 = α3 = α, we have m1 = α,m2 = α,m3 = 2α, n1 = α3, n2 = n3 =

α, n4 = n5 = α + α3, n6 = 2α, n7 = 2α + α3, and accordingly condition (3.26) becomes,

∆12|3 ≤ (α− α3)(t1 + t4 + t5) + αt3. (3.29)

If α3 ≥ 2
3
α, maximization occurs at t⃗ ≡ {1/4, 1/4, 1/4, 1/4, 0, 0, 0, 0} and we have

∆12|3 ≤
α− α3

4
+
α

4
= δI12|3. (3.30)

If α3 ≤ 2
3
α, maximization occurs at t⃗ ≡ {1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0, 0} and we have

∆12|3 ≤
α− α3

2
+
α

6
= δI12|3. (3.31)
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This completes proof of the claim.

Remark 2 It is instructive to see an explicit example how the entanglement certification cri-

teria get weakened with lesser amount of information about the state in question. For that,

consider a three-qubit noisy GHZ state described in Eq. (3.3), where N = 3, and the Hamil-

tonian has the following specifications: α1 = α2 = α > α3 = 2α/3. Let’s set κ = 2

and focus on the thermodynamic quantity ∆12|3(Eq. 3.4). By comparing the values of ∆12|3

with δGL
12|3(2a), δG12|3,(2b) and δI12|3(3.25b & 3.25c), we obtain the entanglement threshold values:

λGL
12|3 = 1/5 < λG12|3 = 1/2 < λI12|3 = 4/5, respectively. Beyond these threshold values, the state

is entangled, and it is evident that the range of entanglement expands as our separability bound

δ12|3 incorporates more information about the state.

3.3.3.3 Ten-qubit system

Consider a 10-qubit system with Hamiltonian

H =
10∑
l=1

H̃l; where H̃l := I1 ⊗ · · · ⊗ Il−1 ⊗Hl ⊗ Il+1 ⊗ · · · ⊗ I10, (3.32)

with Hl =
∑1

i=0(El + iαl)|i⟩⟨i|. Our experiment considers a central qubit whose energy gap

between excited and ground state is denoted by αc and the rest qubits are identical where energy

gap takes the value α > αc.

Proposition 4 Any state of this system separable across 1-vs-1c bipartition satisfies the condition

∆1|1c ≤ 0 := δI1|1c , when α1 = αc < αj = α ∀ j ̸= 1 (3.33a)

∆1|1c ≤
α− αc

2
:= δI1|1c , when α1 = α. (3.33b)

proof : In this case criterion (2b) of Theorem 1 boils down to

∆1|1c ≤
210−1∑
i=1

(m1 − ni)ti.. (3.34)

Depending on the central qubit’s arrangement in bi-partition two cases are possible.
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Figure 3.3: A plot of state independent entanglement threshold (λGL
κ ) across 1-vs-1c bi-partition versus

the energy difference in central qubit (αc) for a ten-qubit system.

(C-I) α > α1 = αc > 0 : m1 = αc, n1 = αc, nj ≥ α ∀j ̸= 1, and accordingly condition (3.34)

becomes,

∆1|1c ≤ −
210−1∑
i=2

(ni − αc)ti. (3.35)

Note that maximization occurs at t⃗ ≡ {t0, t1, t3, tk = 0} ∀k ∈ {4, · · · , 210 − 1} and we

have

∆1|1c ≤ 0 := δI1|1c . (3.36)

(C-II) 0 < α1 = α : m1 = α, n1 = αc, nj ≥ α ∀j ̸= 1 and accordingly condition (3.34)

becomes,

∆1|1c ≤ (α− αc)t1 −
210−1∑
j=2

(nj − αc)tj. (3.37)

In this case maximization occurs at t⃗ ≡ {1/2, 1/2, tk} ∀k ∈ {3, · · · , 210 − 1} and we have

∆1|1c ≤
α− αc

2
:= δI1|1c . (3.38)

This completes the proof.

Remark 3 It turns out that the state-independent value of purity ensuring entanglement varies

with the energy difference between the ground and excited states of the central qubit (αc). Let’s

consider an N -qubit noisy GHZ system (3.3) where N − 1 qubits are identical with energy pa-

67



Chapter 3

Figure 3.4: (Color Online) (a) 2-qubit system sodium fluoro-phosphate (NAFP, with 19F and 31P being
first and second qubits) used in Experiment I. (b) The star topology configuration, wherein each ancillary
spin A interacts with the central spin 13C. (c,d) 3-qubit star-system fluoroacetonitril (FAN) and 10-qubit
star-system trimethyl-phosphate (TMP) used in Experiment II. (e) Di-bromo fluoromethane (DBFM, with
1H, 13C, and 19F being first, second, and third qubits) used in Experiment III.

rameter α, while the central qubit has αc < α. By comparing the values of ∆1|1c with the

separability bound δI1|1c , we can determine that the entanglement threshold value is given by

λI1|1c = (N−1)α
αc+(N−1)α

. If the purity parameter λ exceeds this bound, we classify the state as en-

tangled. Note that as αc approaches to α, state independent thresh-hold value of purity λI1|1c

decreases and consequently more region of entanglement can be detected (see Fig.3.3).

3.4 Experiments

3.4.1 Experiment I: Two-qubit Bell diagonal states

In our first experiment we deal with two-qubit Bell diagonal states prepared using the system

NAFP (Fig. 3.4 (a)) dissolved in D2O. All the experiments were carried out on a 500 MHz Bruker

NMR spectrometer at an ambient temperature of 300 K. Hamiltonian of the system consisting

of the internal part and the RF drive reads as H12 = H int
12 + HRF

12 , where H int
12 = −ωF I1z −

ωP I2z + 2πJI1zI2z and HRF
12 = ΩF (t)I1x +ΩP (t)I2x, with Iix = σix/2, Iiy = σiy/2, Iiz = σiz/2.

Here (ωF , ωP ) and (ΩF , ΩP ) respectively denote the Larmor frequencies and RF amplitudes of

(19F, 31P), ℏ = 1, and J is the scalar coupling constant. We prepare Bell diagonal states with

two independent controllable parameters β and γ. We start with the thermal state, which under

high-field, high-temperature approximation reads as ρth = I/4 + ϵP (
γF
γP
I1z + I2z), where ϵP =

γPB0/4kBT . The method of spatial averaging yields us psuedo-pure state (PPS) |11⟩⟨11|pps =

(1 − ϵ)I/4 + ϵ|11⟩⟨11|, with ϵ << 1 (Fig.3.5 (a)). Within the paradigm of PPS we set ϵ = 1
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Figure 3.5: (Color Online) (a) The NMR pulse sequence to prepare Bell diagonal state with control pa-
rameter β and γ. Here PFG is the Pulsed-Field Gradient and ∆ν is the resonance offset of both 19F and
31P. One of the operations [Uper ◦ H ◦ CNOT] takes the Bell diagonal state to its passive. Detailed ex-
planation of this sequence is given in the supplemental. (b) Gradient-color-plot for theoretical values of
∆1|2 (in units of ωP ) vs the control parameters β and γ. States outside the white line (inner-perimeter) are
entangled as ∆1|2 > δG1|2. For the states outside the black line (outer-perimeter) ∆1|2 > δI1|2 and hence

they are also entangled. (c) Gradient-color-plot for the experimental values of ∆Exp
1|2 with estimated errors

of ±0.1ωP . Here error originates both from the spin system as well as the NMR hardware, accordingly we
have estimated the random error from the experimental NMR spectrum corresponding to the least signal-
to-noise ratio providing a useful upper bound for errors. (d) 11 × 11 pixel theoretical gradient-color-plot
of ∆1|2: evidently state independent certification scheme is weaker than the state dependent scheme.
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Figure 3.6: (a) Quantum circuit to prepare Bell-diagonal state ρ12. HereRy(α) is the rotation along y-axis
with angle α and the unread measurement after G is equivalent to a crusher gradient that destroys all the
coherence in x-y plane. (b) Simplified circuit with two independent parameters along with passive state
ρp12 conversion.

and realize the effective state |11⟩⟨11| [170]. Subsequently we prepare the two-parameter Bell

diagonal state

ρ12 =
1∑

i,j=0

pij|Bij⟩⟨Bij|, (3.39)

|B0j⟩ := (|00⟩+ (−1)j|11⟩)/
√
2, p00 := [S(β/2)S(γ/2)]2,

|B1j⟩ := (|01⟩+ (−1)j|10⟩)/
√
2, p01 := [S(β/2)C(γ/2)]2,

p10 := [C(β/2)S(γ/2)]2, p11 := [C(β/2)C(γ/2)]2,

where S(⋆) := sin(⋆) and C(⋆) := cos(⋆).

Our aim is to certify entanglement of the prepared state through the thermodynamics entangle-

ment criteria obtained in Theorem 1. For that we need to evaluate the following thermodynamic

quantity from experiment:

∆1|2 := W (ρ12)−W[κ](ρ1)− E(ρ2) + E2
g . (3.40)

To evaluate W (ρ12), we need to apply a proper unitary so that the state ρ12 evolves to the lowest
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energy state (i.e. the passive state). In case of an unknown state ρ12 finding the optimal unitary

is quite tedious. However, for the Bell-diagonal state in the following we provide a systematic

method to do the same. First we apply CNOT and Hadamard [see Fig.3.6(b)] to evolve ρ12 to

R12 =
1∑

i,j=0

pij|ij⟩⟨ij|, (3.41)

which is diagonal in computational basis {|ij⟩}1i,j=0. In the next step, we have to apply unitary op-

eration that permutes the computational basis that accordingly leads us to the lowest energy state.

As it turns out, in this case 24 different permutations Uper are possible that can be represented as

Uper ≡ UG
12 ◦ UL

12, where

UG
12 ∈{I12,CNOT1,CNOT2,CNOT1 ◦ CNOT2,CNOT2 ◦ CNOT1,CNOT1 ◦ CNOT2 ◦ CNOT1} ,

(3.42a)

UL
12 ∈{I1 ⊗ I2, I1 ⊗ Y2,Y1 ⊗ I2,Y1 ⊗ Y2} , with (3.42b)

Ys :

|0⟩s 7→ |1⟩s

|1⟩s 7→ |0⟩s

 ; CNOT1 :



|00⟩12 7→ |00⟩12

|01⟩12 7→ |01⟩12

|10⟩12 7→ |11⟩12

|11⟩12 7→ |10⟩12


; CNOT2 :



|00⟩12 7→ |00⟩12

|01⟩12 7→ |11⟩12

|10⟩12 7→ |10⟩12

|11⟩12 7→ |01⟩12


;

(3.43)

and I be the identity operation. The task now boils down to evaluating the energy of the state

R̃12 = UperR12U†
per for obtaining the lowest energy state by varying these 24 permutations. This

completes the process of evaluating W (ρ12). On the other hand, W[κ](ρ1) in this case becomes

zero as ρ12 being the Bell-diagonal state we have ρ1 = I/2. Since the system’s Hamiltonian is

known the other two terms in left hand side of Eq.(3.40) can be evaluated immediately. Please

note that, during the process we do not need to know the spectral of the given state since the

expected energy value suffice the purpose. This experimentally obtained thermodynamic quantity

∆Expt
1|2 is plotted in Fig.2(c) of the main manuscript. Now to certify entanglement, we need to

evaluate the separability bounds δG1|2 and δI1|2 for the given state ρ12. We can also calculate ∆1|2
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analytically to tally with our experiment. For the system in consideration with H int
12 ≈ −ωF I1z −

ωP I2z where J << (ωF , ωP ) we have

x0 = 1/2, x1 = 1/2, m0 = 0, m1 = ωF = α1, n0 = 0,

n1 = ωP = α2, n2 = ωF , n3 = (ωF + ωP )

 ; (3.44)

and accordingly we get

∆1|2 = m1x1 −

(
3∑

i=1

niti

)
= [ωF/2− (ωP t1 + ωF t2 + (ωP + ωF )t3)] , (3.45a)

δG1|2 =
3∑

i=1

(m1 − ni) ti = (ωF t1 − ωP (t1 + t3)) , (3.45b)

δI1|2 =
α1 − α2

2
= (ωF − ωP )/2, (3.45c)

where vector t⃗ ≡ {tk}3k=0 is obtained by arranging {pij} in descending order. Now, in 500MHz

spectrometer we have, ωF = 470.385MHz and ωP = 202.404MHz, which thus yield

∆1|2 = (1.162− 2.324t2 − 3.324t3 − t1)ωP , (3.46a)

δG1|2 = (1.324t1 − t3)ωP , (3.46b)

δI1|2 = 0.662ωP . (3.46c)

This way we obtain the value of the quantity ∆Expt
1|2 experimentally. Notably as the number of

qubits increases, the optimization over the set of possible unitary operations expands significantly,

and hence the scalability issues persists.

Note that, evaluation of the quantity δG1|2 in Eq. 3.46(b) demands knowledge of the global spectral,

whereas δI1|2 is state independent. Entanglement is certified whenever ∆1|2 is strictly greater than

any one of these quantities. Varying the parameter β and γ we show the entanglement certifi-

cation in Fig.3.5. through ‘gradient-color-plot’. As expected and also evident from the plot, the

state independent certification scheme turns out to be weaker than the state dependent scheme.

For instance, the specific values of β = 2π/5 and γ = 3π/10 yield ∆1|2 = 0.338ωP , which is

strictly less than δI1|2 = 0.662ωP , but greater than δG1|2 = 0.292ωP . This is not visible in Fig.3.5

(b)-(c) due to limited pixel resolution, but can be seen in Fig.3.5 (d). Important to note that, our
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entanglement certification scheme does not require tomographic knowledge of the state, rather

it is obtained by evaluating expected energies of the given state and the unitarily evolved state.

More specifically, our thermodynamic entanglement criteria can certify entanglement in the given

state without requiring the information of the population frequencies for different energy eigen-

states. Following are some methodologies used in the experiments.

Preparation of PPS

We start with the thermal state, which under high-field, high-temperature approximation reads as

ρth = I/4 + ϵP (
γF
γP
I1z + I2z), where ϵP = γPB0/4kBT and γF

γP
≈ 4/

√
3. The identity part is

invariant under the unitary transformations, neither contributes to the NMR signal, and is ignored

henceforth. The PPS preparation (upto the scaling factor ϵP can be described as follows:

1

4
I+ ϵP

[
4√
3
I1z + I2z

]
30Fx−−→1

4
I+ ϵP

[
4√
3

√
3

2
I1z −

4√
3

1

2
I1y + I2z

]
1/2J−−→1

4
I+ ϵP

[
2I1z +

4√
3
I1xI2z + I2z

]
60Fy , PFG
−−−−−→1

4
I+ ϵP [I1z − 2I1zI2z + I2z]

≡ (1− ϵ)
1

4
I+ ϵ|11⟩⟨11|. (3.47)

Control of pij
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Using notations Cθ = cos θ & Sθ = sin θ,

1

4
I+ ϵP [I1z − 2I1zI2z + I2z]

βF
y , γP

y , PFG
−−−−−−−→ 1

4
I+ ϵP [CβI1z − CβCγ2I1zI2z + CγI2z]

=
1

4
I+ ϵP

1

2


Cβ + Cγ − CβCγ

Cβ − Cγ + CβCγ

−Cβ + Cγ + CβCγ

−Cβ − Cγ − CβCγ

 ,

=
1

4
I+ ϵP

1

2


1− 4p00

1− 4p01

1− 4p10

1− 4p11

 ≡
∑

i,j∈{0,1}

pij|ij⟩⟨ij| (3.48)

up to the uniform background population within the PPS paradigm.

Hadamard operation

The Hadamard operation on F is realized by

U180xU90y = exp(−iπIx) exp(−iπIy/2) = H, up to a global phase. (3.49)

Implementing CNOT

UCNOT = UyUzzU
†
z12U

†
y

= exp(−iπI2y/2) exp(−iπI1zI2z) exp(iπ(I1z + I2z)/2) exp(iπI2y/2). (3.50)

In our experiment, local z-rotations U †
z12 was realized by introducing a temporary resonance off-

set of ∆ν = 10000 Hz for a duration 1/(4∆ν) = 25µs. Similarly, the bilinear rotation Uzz was

realized by using the J-Hamiltonian HJ = 2πJI1zI2z evolving for time 1/(2J) as indicated in

the pulse sequence.
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Implementing Uper

The Uper operator has a sequence of nonlocal CNOT gates and local 90y rotations as described in

Eq. 3.46. These are implemented in the same way as described in the previous steps.

Detection:

The final 45 degree y-pulse allows the measurement of not only linear Iiz terms, but also bilinear

I1zI2z term:

Iiz
45y−−→ Iix,

IizIiz
45y−−→ 1√

2
(IixIiz + IizIix) , (3.51)

both the cases leading to single-quantum observable NMR signals. For 90y pulse, the bilinear

term becomes I1xI2x which is a combination of zero- and two-quantum coherence and hence not

directly observable.

3.4.2 Experiment I-b: Two-qubit Werner state

As of special interest, in this experiment we addresses entanglement certification in two-qubit

Werner class of states. For that, we use a two-qubit homo-nuclear spin system of 5-Bromothiophene-

2-Carbaldehyde (BRTP) dissolved in Dimethyl Sulphoxide (DMSO) [see Fig. 3.7(a)]. All the

experiments are carried out on a 500 MHz Bruker NMR spectrometer at an ambient temperature

of 300 K. The Hamiltonian of the system can be written in terms of the internal part and the RF

drive as

H12 = H int
12 +HRF

12 , where (3.52a)

H int
12 = − (ωH + π∆ν) I1z − (ωH − π∆ν) I2z + 2πJI1zI2z

≈ −ωH(I1z + I2z), for (J,∆ν) << ωH , and (3.52b)

HRF
12 = ΩH(t) (I1x + I2x) . (3.52c)

Here ωH denotes the Larmor frequency of proton, ∆ν is the chemical shift difference between

the two spins, J denotes the scalar coupling constant, and ΩH denotes the RF amplitude. In
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Figure 3.7: (a) The 1H spectrum corresponding to the singlet or Werner state of pair of hydrogen spins
BRTP. (b) The NMR pulse sequence to produce Werner class states with controlled purity and then to
certify the presence or absence of entanglement. Here rectangles with Θβ = e−iΘ(I1β+I2β) represent RF
rotations, delays represent free-evolutions, and PFG is the Pulsed-Field Gradient. Here a short filter time
of a few seconds is used to allow the decay of triplet state thereby retaining high-fidelity singlet state [171].
The final 45 degree y-pulse allows the measurement of not only linear Iiz terms, but also bilinear I1zI2z
term. (c) Plot of ∆1|2 in units of ωH versus purity of the Werner class. The vertical dotted lines indicate the
purity threshold for entanglement: the left one marks purity λ = 1/3, above which ∆1|2 surpasses δG1|2 and
the state becomes entangled; the right one marks λ = 1/2, corresponding to the state-independent bound
δI1|2. The errorbar represents the estimated random error due to noise.

BRTP, ωH = 500.2 MHz, ∆ν = 192 Hz and J = 4.01 Hz. Using appropriate RF pulses, we can

realize various local rotations and an entangling gate can be implemented through scalar coupling

[see Fig. 3.7(b)]. When applied on a pure superposition state, the entangling gate can produce

a singlet pair. Intrusion of white noise via decoherence lead to a noisy singlet state belonging in

Werner class

ρλ := λ|ψ−⟩⟨ψ−|+ (1− λ)I/4, λ ∈ [0, 1], where |ψ−⟩ = 1√
2
(|01⟩ − |10⟩) . (3.53)

Now criterion 3.5b can certify entanglement for the parameter values λ > 1/3, whereas a

state independent thermodynamic criterion can detect entanglement for the parameter ranges

λ > ωH

2ωH
= 1/2.
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To prepare the Werner class of state in BRTP system, we start with thermal state, which under

high-field, high-temperature approximation (ℏωH << kBT ) reads as ρth = I/4 + ϵH(I1z + I2z),

where ϵH = ωH/4kBT . We then prepare the long-lived singlet state (LLS) by applying suitable

pulse sequence as shown in the preparation part of Fig. 3.7(b),

ρLLS =
I

4
− ϵH(I1xI2x + I1yI2y + I1zI2z)

= (1− ϵH)
I

4
+ ϵH |ψ−⟩⟨ψ−|. (3.54)

As the name suggests, LLS outlives any other nonequilibrium state [172]. In BRTP, LLS decay

constant TLLS is 12.9 s, which is considerably longer than the individual T1 values (longitudinal

relaxation time constants) of 6.1 s and 8.2 s. Thus, after the filter time shown in Fig. 3.7(b),

we obtain a clean state in the above form of Eq. (3.54) [171]. Since LLS is isomorphic to a

pure singlet, we invoke the paradigm of pseudo-pure states [170] and set ϵH = 1. Thus our

reference state at time t = 0 is ρλ(0) ≡ |ψ−⟩⟨ψ−|. During the storage time, white noise intru-

sion takes place and the singlet state gradually becomes more and more mixed Werner state, i.e.,

ρλ(τ) = (1 − λ(τ))I/4 + λ(τ)|ψ−⟩⟨ψ−|, where λ(τ) = e−τ/TLLS is the purity factor of Werner

class.

To evaluate global ergotropic work W [ρλ(τ)] we unitarily drive the system to its passive state

by applying appropriate pulse sequence as shown in the 2nd part of Fig.3.7(b)

ρλ(τ) = η(τ)I+ λ(τ)[I/4− (I1xI2x + I1yI2y + I1zI2z)]

1
4∆ν−−→ η(τ)I+ λ(τ)[I/4− (−I1xI2y + I1yI2x + I1zI2z)]

90
(1,2)
y−−−→ η(τ)I+ λ(τ)[I/4− (I1zI2y − I1yI2z + I1zI2z)]

1
2J−→ η(τ)I+ λ(τ)[I/4− (−I1x + I2x + 2I1xI2x)/2]

1
2∆ν−−→ η(τ)I+ λ(τ)[I/4− (I1y + I2y − 2I1yI2y)/2]

90
(1,2)
−x−−−→ η(τ)I+ λ(τ)[I/4− (−I1z − I2z − 2I1zI2z)/2]

= diag (1− 3η(τ), η(τ), η(τ), η(τ)) = ρpλ(τ), (3.55)
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where η(τ) := (1−λ(τ))/4, 90x/y represents a π/2 rotation with rotation axis along x/y, (1/2J)

and (1/4J) delays represent the free evolution under the scalar coupling, (1/2∆ν) ≡ 901z90
2
−z

and (1/4∆ν) ≡ 451z45
2
−z represent the evolution under the chemical shift and PFG is the crusher

gradient used in dephasing the coherence. For a finite storage time the system remains in the

passive state having energy E(ρpλ(τ)) = Tr(H int
ABρ

p
λ(τ)) ≃ −ωHλ(τ), where H int

AB ≈ −ωH(I1z +

I2z), for (J,∆ν) << ωH and it can be estimated simply by measuring the diagonal elements of

ρpλ(τ) following the procedure shown in the last part of Fig. 3.7(b).

For singlet state, the marginal states are maximally mixed and no work can be extracted

under a cyclic unitary operation. Therefore, using Eq. (3.6), we have ∆1|2 = ωHλ(τ) − ωH/2.

Furthermore, since m1 = ωH , t1 = t2 = t3 = (1 − λ(τ))/4, we therefore have δG1|2 = (λ(τ) −

1)ωH/4. In this case, the spectral independent bound turns out to be δI1|2 = 0. In Fig.3.7 (c)

theoretically estimated (solid line) as well as experimentally estimated (circles) values of ∆1|2 are

plotted against the purity factor λ(τ) = e−τ/TLLS . The vertical dashed and dotted-dashed lines

correspond to δG1|2 and δI1|2, respectively. For the region where ∆1|2 exceeds those bounds the state

is entangled.

3.4.3 Experiment II: Multi-qubit systems

Multi-qubit entangled states within NMR architecture can be prepared in star topology register

(STR) [155]. STR involves a central qubit C (1st qubit) uniformly interacting with a set of N − 1

identical satellite qubits A (see Fig. 3.4(b)). Central qubit can be selectively addressed as it

is realized by a different nuclear isotope. The ancillary qubits being indistinguishable can be

addressed globally only. STR allows efficient preparation of entangled GHZ state [154]. The

STR Hamiltonian along with the pulse sequence dynamics is described in Supplemental part.

We carry out experiments on the following two systems: (i) 3-qubit STR using FAN, wherein
19F spin is the central qubit and two 1H spins are the satellite qubits, with JCA = 45.5 Hz;

(ii) 10-qubit STR using TMP, wherein 31P spin is the central qubit and nine 1H spins are the

satellite qubits, with JCA = 11.04 Hz (see Fig. 3.4). After preparing the noisy state ρλ[N ] =

(1 − λ)I/2N + λ|ψN⟩⟨ψN |, with |ψN⟩ := (|0⟩⊗N + |1⟩⊗N)/
√
2, we test entanglement across

C-vs-A bipartition considering N = 3 and 10 respectively for FAN and TMP. In doing that, we

experimentally determine the thermodynamic quantity ∆1|1c along with global spectral dependent
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separability bound δG1|1c and state independent bound δI1|1c . Subsequently, we find out the ranges

of λ for which ∆1|1c exceeds these bounds, and accordingly entanglement across C-vs-A gets

certified.

The STR Hamiltonian is given by

HSTR = H int
STR +HRF

STR, where,

H int
STR = −ωCI1z − ωA

N∑
i=2

Iiz + 2πJI1z

N∑
i=2

Iiz (3.56a)

HRF
STR = ΩC(t)I1x + ΩA(t)

N∑
i=2

Iix. (3.56b)

Here ωC and ωA are the Larmor frequencies of C and A spins respectively, J is the scalar cou-

pling constant between C and A spins (see Fig. 3.4), and ΩC(t), ΩA(t) are the time-dependent

RF drives on C and A respectively.

Preparation step

The initial thermal state of an STR is of the form

ρth =
I

2N
+ ϵA

(
γC
γA
I1z +

N∑
i=2

Iiz

)
,

where ϵA = γAB0/(2
NkBT ). Starting from the thermal state a θy pulse on all the qubits followed

by PFG results in the control over purity, i.e.,

ρth
θC,A
y−→ PFG−→ I

2N
+ ϵA cos θ

(
γC
γA
I1z +

N∑
i=2

Iiz

)

→ I

2N
+ ϵA cos θ

N∑
i=2

Iiz,

where we have ignored the first-qubit component, since it does not lead to the GHZ state (and gets

filtered away by the subsequent PFG pulses). On further applying INEPT followed by CNOT, we
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obtain

ρNqh =
∑
qh

rqh

[
(1− ϵA cos θ)

I

2N
+ ϵA cos θ ρqh

]
,

where
∑

qh
rqh = 1, with ρqh describing a set of entangled states of coherence order qh = N−2h.

Note that qh ∈ {N,N − 2, ...,−N + 2} for h ∈ {0, 1, ..., N − 1}. Using a pair of PFGs, we can

filter out GHZ class (qh = N , h = 0) by choosing lopsidedness

l0 = 1 + (N − 1)
γA
γC

(3.57)

[155, 156]. Invoking the paradigm of pseudopure states by setting rN = 1 and ϵA = 1, we obtain

ρN(λ(θ)) = (1− λ(θ))
I

2N
+ λ(θ)|ψN⟩⟨ψN |, where |ψN⟩ :=

1√
2
(|0⟩C |0⟩⊗(N−1)

A + |1⟩C |1⟩⊗(N−1)
A )

(3.58)

is the N -qubit GHZ state with purity control λ(θ) = cos θ. This completes the preparation proto-

col of GHZ class of states.

Entanglement certification step

The entanglement certification step involves transforming GHZ class of states to their correspond-

ing passive states. This is accomplished by another CNOT gate followed by a 90y pulse (which

cancels with a subsequent readout pulse) as depicted in Fig.3.8. A pair of PFG pulses of relative

ratio −l0 is used to filter the GHZ state for which the passive state reads as

ρpN(λ(θ)) = [1− λ(θ)]
I

2N
+ λ(θ)|0⟩⟨0|C ⊗ |0⟩⟨0|⊗(N−1)

A .

We have carried out the experiments on two systems as shown in Fig. 3.4. This final spectrum

corresponding to the GHZ class contains a single transition at frequency −J(N − 1)/2 [155].

Comparing the final intensity with that corresponding to θ = 0 we have a direct estimation of the

purity factor λ(θ).
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Figure 3.8: The NMR pulse sequence to prepare GHZ class states with controlled purity on an STR and
then certify the presence or absence of entanglement. The vertical line shows the instant when the passive
state is created. The dashed pulses cancel each other.

3.4.3.1 Three-qubit system

We have used FAN (fluoroacetonitril; Fig. 3.4 (d)), wherein 19F spin is the central qubit and

two 1H spins are the satellite qubits. Here JFH = 11.04 Hz. Now following Eq. (3.56a) and

Eq.(3.58) we have our Hamiltonian and initial global state as H int
STR ≈ −ωF I1z − ωH

∑3
i=2 Iiz as

J << (ωH , ωF ) and ρN=3(λ(θ)). Furthermore, using Eq.(3.4) we have

∆1|23 = W (ρN=3(λ(θ)))−W (ρ1)− E(ρ23) + E23
g

= [E(ρN=3(λ(θ)))− E(ρpN=3(λ(θ)))]− [E(ρ1)− E(ρp1)]− E(ρ23) + E23
g

= −E(ρpN=3(λ(θ))) + E23
g

= λ(θ)(ωF + 2ωH)/2− ωH , (3.59)

where E(ρpN=3(λ(θ))) = tr(H int
STRρ

p
N=3(λ(θ))) = −λ(θ)(ωF + 2ωH)/2, E23

g = −ωH is the

ground state energy of the second and third qubit and E(ρp1) = 0 . Now following Eq.(3.22) and

using values α1 = ωP , α = ωH and t1 = ... = t7 = (1− λ(θ))/8 we have

δG1|23 = (λ(θ)− 1)(ωH − 3ωF/8) (3.60)

and following Eq.(3.23) we have spectral independent bound as δI1|23 = 0. Fig. 3.9(b) in the

manuscript shows both δG1|23 and δI1|23 marking ∆1|23 at λ = 3/7 and λ = 0.68 and for any value
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of λ above them the state ρN=3(λ(θ)) is said to be entangled.

3.4.3.2 Ten-qubit system

We have used TMP (trimethyl-phosphate; Fig. 3.4 (c)), wherein 31P spin is the central qubit and

nine 1H spins are the satellite qubits. Here JPH = 11.04 Hz. Following Eq. Eq. (3.56a) and

Eq.(3.58) we have our Hamiltonian and initial global state as H int
STR ≈ −ωP I1z − ωH

∑10
i=2 Iiz as

J << (ωH , ωP ) and ρN=10(λ(θ)) for GHZ class we have

∆1|1c = W (ρN=10(λ(θ)))−W (ρ1)− E(ρ1c) + E1c

g

= [E(ρN=10(λ(θ)))− E(ρpN=10(λ(θ)))]− [E(ρ1)− E(ρp1)]− E(ρ1c) + E1c

g

= −E(ρpN=10(λ(θ))) + E1c

g

= λ(θ)(ωP + 9ωH)/2− 9ωH/2, (3.61)

where E(ρpN=10(λ(θ))) = tr(H int
STRρ

p
N=10(λ(θ))) = −λ(θ)(ωP + 9ωH)/2, E1c

g = −9ωH/2 is the

ground state energy of rest of the 9 qubits and E(ρp1) = 0. Now following Eq.(3.35) and using

values α1 = ωP , α = ωH and t1 = t2 = ... = t210−1 = (1− λ(θ))/210 we have

δG1|1c = (λ(θ)− 1)(9ωH/2− (29 − 1)ωP/2
10) (3.62)

and following Eq.(3.36) we have spectral independent bound as δI1|1c = 0. Fig. 3.9(d) shows

both δG1|1c and δI1|1c marking ∆1|1c at λ = 0.499 and λ = 0.957 and if any value of λ is above the

marked values then ρN=10(λ(θ)) is entangled.

3.4.4 Experiment III: Global vs Global-Local Separability bounds

In this experiment we aim to compare the efficacy of entanglement certification of three-qubit

noisy GHZ state through Global-Local and Global separability bounds as stated in Theorem 1.

In our earlier experiments when we were evaluation ∆X|Xc , we considered the X part consisting

only one subsystem. Accordingly the Global-Local separability bound and Global separability

bound become identical. In this case we consider a three-qubit system with X consisting of two

qubits. In experiment we use Di-Bromo Fuloromethane (DBFM) [see Fig. 3.5(e)] as the three-
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Figure 3.9: (Color Online) (a) 19F spectra of FAN corresponding to one-pulse experiment on thermal
state (front) and to the three-qubit GHZ state (back). (b) Plot ∆1|23 (in the unit of ωH ) vs purity λ for
3-qubit noisy GHZ states. Comparing the values of ∆1|23 and δG1|23, δI1|23, we identify the threshold values
marked by the dotted lines: λ = 3/7 and λ = 0.68, respectively. Above these thresholds, the state exhibits
entanglement. (c) 31P spectra of TMP corresponding to one pulse experiment (front), and to GHZ (back) .
(d) ∆1|1c vs purity λ for the 10-qubit GHZ class. Here λ = 0.499 and λ = 0.957 for δG1|1c and δI1|1c marks
the entanglement threshold boundary. The errorbar represents the estimated random error due to noise.

qubit system. The Hamiltonian of the system can be written in terms of the internal part and the

RF drive as

H123 = H int
123 +HRF

123, where (3.63a)

H int
123 = −ωHI1z − ωCI2z − ωF I3z + 2πJHCI1zI2z + 2πJCF I2zI3z + 2πJHF I1zI3z

HRF
123 = ΩH(t)I1x + ΩC(t)I2x + ΩF (t)I3x, (3.63b)

H int
12 = −ωHI1z − ωCI2z + 2πJHCI1zI2z, where X ≡ 12. (3.63c)

Here, H,C, &F correspond to first, second, and third system respectively.

Preparation step

We start with the initial thermal state

σth
123 =

1

8
I+ ϵH

(
I2z +

γC
γH

I2z +
γF
γH

I3z

)
, where ϵH = γHB0/4kBT. (3.64)
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Figure 3.10: (a) Quantum circuit to prepare 3-qubit GHZ state ρ123 with control θ, here PPS stands for
pulse sequence to prepare psuedo-pure state from thermal equilibrium.(b) Quantum circuit for global and
local passive state conversion and to measure their corresponding energies.

After application of the control sequence as shown in Fig. 3.10(a) and the PPS pulse sequence

[173], we obtain the state

σϵ
123(λ) =

1− ϵλ

8
I+ ϵλ|000⟩⟨000|, (3.65)

where λ = cos θ. Within the PPS paradigm taking ϵ = 1 we have

σ123(λ) =
1− λ

8
I+ λ|000⟩⟨000|. (3.66)

Now, consecutively applying Hadamard on H , CNOT with H being the control and C being the

target, and CNOT (C control and F target) [Fig. 3.10(a)], we prepare the noisy GHZ state

ρ123(λ) =
1− λ

8
I+ λ|ψ⟩GHZ⟨ψ|, (3.67)

where |ψ⟩GHZ := (|000⟩+ |111⟩)/
√
2.

Entanglement certification step

To evaluate the quantity ∆12|3 we will first evaluate W (ρ123(λ)). For that we unitarily evolve

ρ123(λ) to the corresponding lowest energy state. While for a generic state the optimization over
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the unitary is a tedious task, however for this class of state it can be achieved by applying a single

unitary operation [see Fig. 3.10(b)]. The resulting state reads as

ρp123(λ) =
1− λ

8
I+ λ|000⟩⟨000|, (3.68)

which in turn will yield W (ρ123(λ)) = E(ρ123(λ)) − E(ρp123(λ)). To evaluate W[12](ρ12) we

evolve the subsystem 12 to the corresponding lowest energy state ρp12 [see Fig. 3.10(c)]. We have

ρ12 =
1 + λ

4
|00⟩⟨00|+ 1− λ

4
|01⟩⟨10|+ 1− λ

4
|10⟩⟨01|+ 1 + λ

4
|11⟩⟨11|, (3.69a)

ρp12 =
1 + λ

4
|00⟩⟨00|+ 1 + λ

4
|01⟩⟨01|+ 1− λ

4
|10⟩⟨10|+ 1− λ

4
|11⟩⟨11|, (3.69b)

where ρ12 = Tr3[ρ123]. Since the system Hamiltonian is known we can eventually calculate

energy of the third subsystem E(ρ3), its ground state energy E3
g , and obtain ∆Exp

12|3 experimen-

tally. We can also calculate this quantity theoretically. For the system in consideration with

(JHC , JCF , JHF ) << (ωH , ωC , ωF ) we have

x0 =
1 + λ

4
, x1 =

1 + λ

4
, x2 =

1− λ

4
, x3 =

1− λ

4
, t0 =

1 + 7λ

8
,

{t1, · · · , t7} =
1− λ

8
, m0 = 0, m1 = ωC , m2 = ωH , m3 = (ωH + ωC),

n0 = 0, n1 = ωC , n2 = ωF , n3 = ωH , n4 = (ωC + ωF ),

n5 = (ωC + ωH), n6 = (ωF + ωH), n7 = (ωC + ωF + ωH),

ωH = 500MHz, ωC = 125.721MHz, ωF = 470.385MHz


. (3.70)
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Figure 3.11: (Color Online) Plot of ∆12|3 (experimental as well as theoretical), δGL
12|3, δG12|3, and δI12|3

against the noise parameter λ. The state independent, the global, and the global-local separability con-
ditions certify entanglement for the parameter ranges λ > 0.91, λ > 0.71, and λ > 1/5 respectively,
establishing hierarchy among these conditions.

.
These yield us

∆12|3 =
3∑

j=1

mjxj −
7∑

j=1

njtj = (ωC + ωF )λ/2− ωF/2, (3.71a)

δGL
12|3 =

3∑
j=1

(mj −m1)xj +
7∑

j=1

(m1 − nj)tj = (4ωF − ωC)λ/8 + (ωC − 4ωF )/8, (3.71b)

δG12|3 =
2∑

j=1

(mj − nj)tj +
7∑

j=3

(m3 − nj)tj = (ωH + ωC − 2ωF )(1− λ)/4, (3.71c)

δI12|3 = (2ωH − 2ωF + ωC)/5 = 0.0743ωH . (3.71d)

In Fig. 3.11 we plot ∆12|3 (experimental as well as theoretical), δGL
12|3, δ

G
12|3, and δI12|3 against the

noise parameter λ.

3.5 Conclusions and outlook

Manipulating entanglement efficiently in multipartite system is essential for emerging quantum

technologies that involve distributed quantum information protocols. Continuous research effort

is going on to this aim with different quantum architectures [21, 174–177]. Certifying entangle-
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ment is a crucial step for successful implementation of many quantum protocols. Along with

device independent certification scheme through Bell tests [178–183], there exists device de-

pendent witness based method of entanglement certification [184, 185]. However, implementing

those methods are quite challenging in practice when the quantum systems are composed of many

subsystems.

In that respect our proposed thermodynamic criteria are less demanding. It provides a way

to certify entanglement by measuring global and local ergotropic works. We experimentally

validate the proposed thermodynamic entanglement criterion in NMR architecture by considering

particular classes of 2-qubit, 3-qubit, and 10-qubit noisy entangled states. In comparison with

[186] that relies on full density state tomography of pure states and [187] that is limited to bipartite

system, our method achieves certification for multi-qubit mixed states with three different bounds

based on the thermodynamic quantifiers of the system. Our thermodynamic approach opens up

an easy avenue to certify entanglement even when the knowledge about the state in question is

not available. While we have invoked the pseudopure paradigm for our ensemble architecture,

similar protocols can be easily setup for other architectures with access to different degrees of

state purity. For instance, entanglement enhanced quantum sensing by optical probes [128] or

NV centers [188] may be benefited from prior certification of entanglement. At this point, we

would like to point out that study of ergotropy is constantly advancing with different quantum

architectures, such as optical mode [189] and bosonic Gaussian models [190, 191]. It will be

therefore interesting to test entanglement in those physical systems using our proposed criteria.

The recent work of [192] wherein coarse-grained measurement scheme is proposed is worth-

mentioning at this point. Our study welcomes a number of other questions for future research. For

instance, generalizing our criteria for systems with arbitrary local dimensions and generalizing

to capture more exotic kinds of entanglement, such as genuine multi-partite entanglement, would

be quite important. While the local passivity in our case is studied under local unitary operations,

more general notion of strong local passivity is introduced by considering more general local

quantum operation [49, 193, 194]. Obtaining entanglement certification criteria under this generic

consideration could also be quite interesting.
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CHAPTER 4

Maximal work extraction from nuclear spins using FQErgo

Abstract

Considering the emerging applications of quantum technologies, studying energy storage

and usage at the quantum level is of great interest. In this context, there is a significant

contemporary interest in studying ergotropy, the maximum amount of work that can be

extracted unitarily from an energy-storing quantum device. Here, we propose and experi-

mentally demonstrate a feedback-based algorithm (FQErgo) for estimating ergotropy. This

method also transforms an arbitrary initial state to its passive state, which allows no fur-

ther unitary work extraction. FQErgo applies drive fields whose strengths are iteratively

adjusted via certain expectation values, conveniently read using a single probe qubit. Thus,

FQErgo provides a practical way for unitary energy extraction and for preparing passive

states. By numerically analyzing FQErgo on random initial states, we confirm the success-

ful preparation of passive states and estimation of ergotropy, even in the presence of drive

errors. Finally, we implement FQErgo on two- and three-qubit NMR registers, prepare

their passive states, and accurately estimate their ergotropy. Reported in

Jitendra Joshi and T. S. Mahesh, Maximal work extraction unitarily from an unknown

quantum state: Ergotropy estimation via feedback experiments , arXiv:2409.04087 (2024).

4.1 Introduction

In second chapter we studied how to charge a nuclear spin quantum battery, in this chapter, we

will aim to extract work from a set of charged nuclear spins initially existing in their unknown

quantum state. Quantum technologies are appealing as they can surpass their classical counter-

parts by using exclusive concepts like coherence and entanglement. Understanding their capa-
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bilities has progressed in recent years, thanks to the numerous experimental breakthroughs that

have improved control over quantum states. Specifically, the investigation of the principles of

quantum thermodynamics is made possible by quantum thermal machines, which include refrig-

erators and heat engines to regulate heat flow and work production [195, 196]. Further options for

storing energy for later extraction include quantum batteries [48, 72, 74, 78, 95, 197–202]. The

quantum batteries have the potential to outperform their classical counterparts in relevant metrics

like charging speed [77, 93, 169, 203–206], stored energy [71, 101, 169], and energy extraction

[76, 83, 92, 207–210]. The maximum amount of energy that can be extracted from quantum

systems through unitary processes is known as the ergotropy [42]. A practical way to determine

ergotropy is by finding the optimal unitary operation that transforms the system to its lowest at-

tainable energy state, known as its passive state [43]. This can be a challenging undertaking as

ergotropy might be sensitive to correlations that can also impact device performance [211–218].

Recent works have tried to establish a link between entanglement and thermodynamic quanti-

ties like the ergotropy gap, the difference between the maximal extractable works via global and

local unitaries. These thermodynamic quantities can be used to verify entanglement present in

bipartite [219], multipartite [220, 221], and multiqubit mixed states [222]. Using these quantities,

experimental certification of entanglement has been demonstrated in up to 10 qubits [222].

The main focus of this work is FQErgo, an algorithm we propose for preparing the passive

state and thereby estimating ergotropy. FQErgo is inspired by (hence the name) the feedback-

based algorithm for quantum optimization (FALQON) [223], which has been recently developed

for combinatorial quantum optimization. This method is related to quantum Lyapunov control

(QLC) and uses feedback conditioned on qubit measurements at each quantum circuit layer and

parametrized quantum circuits to determine the values of the circuit parameters at subsequent

layers [224, 225].

We note several salient features of the FQErgo algorithm. Firstly, the all-quantum nature of

the algorithm: unlike the previous methods [226, 227] for estimating ergotropy, FQErgo requires

no classical optimizer, and can be fully automated for convenient practical realizations. Secondly,

FQErgo is robust against circuit errors since each feedback iteration readjusts the drives based on

previous errors. This way, cumulative error growth is prevented. Thirdly, the circuit parameters

can be read efficiently via an ancillary probe qubit using the interferometric method [228–230],
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which alleviates the need for resource-intensive quantum state tomography. In this work, after

numerically analyzing the FQErgo algorithm, we experimentally demonstrate it using two and

three-qubit NMR registers.

4.1.1 Objectives

In this work, we carry out NMR investigation of Work extraction from a nuclear spin system

whose initial state is unknown.

(i) We propose a feedback based method FQErgo for work extraction.

(ii) We numerically simulate FQErgo on one and two qubit system.

(iii) We experimentally verify FQErgo using two and three qubit NMR registors.

4.2 Theory

4.2.1 Unitary extraction of work, passive state, and ergotropy

Given a quantum system in a state ρ0, the ergotropy quantifies the maximum amount of work that

is unitarily extracted while leaving the system into a passive state ρp from which no further work

can be unitarily extracted [42]. If H0 is the system Hamiltonian, the ergotropy is given by

E(ρ0) = E(ρ0)− E(ρp), where,

E(ρp) = min
U

Tr
(
Uρ0U

†H0

)
. (4.1)

Let Up corresponds to the unitary that minimizes the system energy such that ρp = Upρ0U †
p is the

passive state [42, 43]. If H0 and ρ0, in their respective eigenbases, are in the form

H0 =
∑
k

Ek|Ek⟩⟨Ek|, with E1 ≤ E2 ≤ · · · and

ρ0 =
∑
j

rj|rj⟩⟨rj|, with r1 ≥ r2 ≥ · · · , (4.2)
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Figure 4.1: (a) Illustrating n iterations of FQErgo applied on an initial state ρ0 to reach ρn ≈ ρp, its
passive state. (b,c) Determining FQErgo drive amplitude β with a probe qubit, for (b) unitary Hermitian
drive σγ , and (c) nonunitary Hermitian drive A. For energy measurement, we set A = H0.

then the passive state is uniquely defined in the energy eigenbasis as

ρp =
∑
j

rj|Ej⟩⟨Ej|. (4.3)

While the above definitions of the passive state and ergotropy are simple and clear, the experi-

mental realization of the passive state from an unknown initial state and thereby estimating its

ergotropy has not been reported. In the following, we describe a robust method for the same.

4.2.2 FQErgo: A feedback algorithm for ergotropy estimation

FQErgo is based on the FALQON algorithm proposed recently [223]. We assume multiple copies

of individually accessible systems each prepared in the state ρ0, which is not necessarily known.

Alternatively, we can assume an oracle that transforms a uniquely initialized quantum system into
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a definite unknown state ρ0. On introducing a drive Hamiltonian β(t)Hd, the system evolves as

i
d

dt
ρ(t) = [H0 + β(t)Hd , ρ(t)] , (4.4)

where β(t) is the time-dependent drive parameter. Here and in the rest of the paper we have set

ℏ = 1. We seek to minimize the system energy E(ρ(t)) = ⟨H0⟩ρ(t) = Tr(H0ρ(t)), which can be

accomplished by designing control β(t) satisfying the Lyapunov condition

d

dt
⟨H0⟩ρ(t) = β(t) ⟨Cd⟩ρ(t) ≤ 0, ∀ t ≥ 0 (4.5)

where Cd = i[Hd, H0]. One way to satisfy the above is by choosing the control in the form [223]

β(t) = −w⟨Cd⟩ρ(t), (4.6)

where w is a positive scalar coefficient.

The overall algorithm is illustrated in Fig. 4.1 (a). We apply discrete drives each of duration

τ and realize a n-step feedback loop,

Un = un · · ·u2u1, with uk = e−iβkτHd . (4.7)

We find the first drive parameter by measuring the expectation value β1 = −w ⟨Cd⟩ρ0, and pre-

pare the state ρ1 = U1ρ0U
†
1 . The subsequent steps involve finding

βk = −w ⟨Cd⟩ρk−1 and preparing ρk = Ukρ0U
†
k . (4.8)

Thus, starting from an unknown quantum state ρ0, using the sequence of feedback-designed oper-

ators Un ≈ Up, we attain the minimum saturated energy state ρn ≈ ρp. The energy measurements

of the system for the initial state ρ0 and the final state ρn ∼ ρp yield an estimation of ergotropy

via Eq. 4.1.
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4.2.3 FQErgo using a probe qubit

FQErgo described above needs an efficient method to repeatedly extract expectation values of the

commutator in Eq. 4.6, and to monitor the system-energy. Since quantum state tomography is

prohibitively expensive and unnecessary for such a task, we shall use the interferometric circuit

with an ancillary probe qubit [226–228]. The interferometric circuit for measuring the energy

E(ρk) as well as extracting the drive parameter βk in Eq. 4.8 are shown in Fig. 4.1 (b,c). The

circuit involves preparing the probe qubit in the |+⟩ state, the system in any state ρ, applying a

certain controlled operation on the system, and finally measuring the probe qubit. First, consider

extracting the expectation value ⟨U⟩ρ of a unitary Hermitian observable U . In this case, we

implement a controlled U gate as shown in Fig. 4.1 (b). The probe signal is then given by [229],

⟨σx⟩probe = ⟨U⟩ρ. (4.9)

Thus, we directly obtain the desired expectation value of the system as the signal ⟨σx⟩probe in

the probe qubit. For example, if the system Hamiltonian is the Pauli operator σz as described

later in the experimental section, the probe signal directly yields the expectation value ⟨σz⟩ρ.

For the more general case of extracting the expectation value ⟨U⟩ρ of a nonunitary Hermitian

observable A, we construct a unitary e−iαA, where α is a real parameter such that ||αA|| ≪ 1.

Now implementing the controlled gate as shown in Fig. 4.1 (c), we obtain the probe signal [229]

⟨σy⟩probe = −⟨sin(Aα)⟩ρ ≈ −α⟨A⟩ρ. (4.10)

Here, by setting A = Cd, we can extract ⟨Cd⟩ρ directly as the probe signal ⟨σy⟩probe.

4.3 Numerical simulations

4.3.1 Single qubit system

We consider a single qubit system with Hamiltonian H0 = ω0(I − σz)/2 with energy eigen-

values (0, ω0) prepared in an arbitrary mixed state ρ(0) = (1 − ϵ)/2I + ϵ|ψ⟩⟨ψ|, where |ψ⟩ =

cos(θ/2)|0⟩ + eiϕ sin(θ/2)|1⟩ and the purity parameter ϵ ∈ [0, 1]. We now use FQErgo to reach
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Figure 4.2: (a,b) Simulated system-energyE(ρk) vs iteration number k for a single qubit (ω0 = 1) starting
from 20 random initial states applied with (a) ideal FQErgo and (b) FQErgo having random errors. Insets
show the first three iterations. (c) Numerically estimated vs exact ergotropy values with ideal FQErgo
(filled circles) and FQErgo with random errors (filled triangles).

its passive state ρp = (1 − ϵ)I/2 + ϵ|0⟩⟨0|. For the one qubit case, FQErgo needs only two

drives: σx and σy. Fig. 4.2 (a) shows the energy E(ρk) versus iteration number k for a set

of 20 random initial states. In all cases, we see monotonically decreasing energy, ultimately

approaching their respective passive states for sufficiently large iterations n, i.e., ρn → ρp.

The difference between the initial energy E(ρ0) and the final energy E(ρn) estimates the er-

gotropy, i.e., Eest(ρ0) = E(ρ0) − E(ρn). The filled circles in Fig. 4.2 (c), plotting Eest(ρ0) vs

Eexact(ρ0) = E(ρ0) − E(ρp) confirm perfect estimation of ergotropy for all the random initial

states.

Now we numerically analyze the robustness of FQErgo against potential imperfections in

practical implementations. Firstly, being a feedback-based method, FQErgo is naturally robust

against the drive amplitude. If the drive amplitude is lesser than the nominal, it still reaches the

passive state but simply takes more iterations. To study the effect of more general errors, we

introduce an error rotation of 5 degrees about a random direction in every FQErgo iteration. The

system-energy curves in Fig. 4.2 (b) no longer exhibit a perfect monotonic decay, but neither

show serious build-up of errors. The corresponding ergotropy values shown by filled triangles

in Fig. 4.2 (c) show somewhat underestimated values, which is expected since circuit errors can

only make the system settle in a higher energy state by preventing it from reaching the passive

state.
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Figure 4.3: (a,b) FQErgo circuits for local (a) and global (b) energy extraction in two-qubits. Here, local
drives X , Y suffice for reaching the local passive state ρ(12)L and estimating the local ergotropy EL(ρ

(12)
0 )

(a). In contrast, additional global drive such as XY and Zδ [226] gates are necessary for reaching the
global passive state ρ(12)G and estimating the global ergotropy EG(ρ

(12)
0 ) (b). (c,d) Simulated system-

energy vs iteration number for the two-qubit (ω0 = 1 and J = 0.01) FQErgo from 20 random initial states
without error (c) and with error (d). (e,f) The numerically estimated local (e) and global ergotropy (f) vs
the exact values. (g) Ergotropy gap obtained from (e) and (f), vs the exact values. In (e-g), the filled circles
are without random errors and filled triangles are with random errors.
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4.3.2 Two qubit system

There is a fundamental distinction between work extraction in single-qubit and two-qubit systems.

For two-qubit system ρ12, energy can be extracted through either local unitaries UL = U1 ⊗ U2

or global unitaries UG = U12 applied to the entire system. For application of local unitaries, the

system reaches the local passive state ρpL , giving local ergotropy EL = E(ρ0) − E(ρpL). On

the other hand, if global unitaries are applied, the system evolves to the global passive state ρpG ,

determining the global ergotropy, EG = E(ρ0) − E(ρpG). The difference, ∆ = EG − EL, is

referred to as the ergotropy gap which is always greater or equal to zero as UL ⊆ UG [231].

Consider a two-qubit system with HamiltonianH0 = ω0(I⊗I−(σz⊗I+I⊗σz)/2)+J(σz⊗σz)

with |J | ≪ |ω0| and prepared in random initial states ρ(12)0 . The ergotropy gap is now

∆ = EG(ρ
(12)
0 )− (EL(ρ

(1)
0 ) + EL(ρ

(2)
0 )). (4.11)

Our goal is to use FQErgo for estimating both local and global ergotropies and thereby obtaining

the ergotropy gap. As illustrated in Fig. 4.3 (a), we use four local drives H(1)
γ = σγ ⊗ I and

H
(2)
γ = I⊗ σγ , where γ ∈ [x, y] over the first 30 iterations that saturated the energy and reached

ρ30 ≈ ρ(12)pL , the local passive state. From the 31st iteration, we see a further reduction in energy

as we apply a combination of global and local operations, as illustrated in Fig. 4.3 (b). It involves

a tilted phase gate

Zδ = e−iδ(I⊗σy)
[
|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ e−iσzπ/2

]
eiδ(I⊗σy)

with a fixed small angle δ [226], local gates, as well as the global XY gate,

Uxy = e−iβxyHxyτxy with Hxy = σx ⊗ σy + σy ⊗ σx,

strength βxy, and duration τxy. Finally, we find the second energy saturation over 60 iterations

while reaching ρ60 ≈ ρ(12)pG , the global passive state. Fig. 4.3 (c) shows the monotonic energy

decrease for 20 random initial states undergoing FQErgo iteration. For each initial state, we

observe two minimum-energy states, one corresponding to the local passive state and the other to

the global passive state. Figs. 4.3 (e-f) plot the estimated local and global ergotropies against their
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exact values, and Fig. 4.3 (g) plots the estimated ergotropy gaps against exact values. Indeed,

one can apply global energy extraction sequence Fig. 4.3 (b) directly from initial point and reach

passive state much faster but here our focus is to estimate the ergotropy gap ∆.

We again study FQErgo robustness by introducing a random nonlocal error unitary Uerr =

e−iHerrη generated by a random unit-norm error Hamiltonian Herr and η ≡ 2 degrees in every

FQErgo iteration. The system-energy curves shown in Fig. 4.3 (d) lose monotonicity in decay, but

retain the overall trend. The error-affected local and global ergotropy values and the correspond-

ing ergotropy gaps are shown by filled triangles in Fig. 4.3 (e-g). Likewise in one qubit case,

the ergotropy values, particularly the global ergotropy values are underestimated, but the rms

deviation of the ergotropy gap estimations from the ideal values remains below 0.07 indicating

reasonable robustness of FQErgo against unitary errors.

4.3.3 Speed analysis

Figure 4.4: For one qubit (a) and two qubit (b), 10 arbitrary initial states are taken; these plot shows the
minimum number of FQErgo iterations n required to reach the passive state v.s. ω0τ . (c-f) show Bloch
vector evolution from initial state |ψ⟩ = cos(π/3)|0⟩ + eiπ/3 sin(π/3)|1⟩ to passive state ρp for different
values of ω0τ . The area enclosed by dotted rectangles in plots (a) and (b) shows the approximate working
regime for τ values to get the lowest possible FQErgo iteration, i.e., n ranges from (3, 10) for one and
(6, 20) for two qubit systems.
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How many feedback-iterations does FQErgo take to reach the passive state from an arbitrary

initial state? Alternatively, we can ask what should be the optimal step size τ in uk = e−iβkτHd

that takes the minimum number of iterations n to reach the passive state. In the following, we

describe numerical studies to gain insights into these questions. First, let us consider a one qubit

system with ω0 = 1. Fig. 4.4 (a) shows the number of FQErgo iterations n vs ω0τ for 10 random

initial states. Here we find that the optimal time-step corresponds to ω0τ in the range of 1 to 3.

For example, consider the one-qubit initial state |ψ⟩ = cos(π/3)|0⟩+ eiπ/3 sin(π/3)|1⟩. Figs. 4.4

(c-f) illustrate Bloch vector evolutions for various step sizes τ such that ω0τ = 0.5, 2, 3.5, and

5 respectively. Note that for ω0τ = 2, it takes only three FQErgo iterations to reach the passive

state. The behavior is similar in two qubits. Fig. 4.4 (b) shows the n vs ω0τ for 10 random

two-qubit initial states. Here again, the optimal step is for ω0τ in the neighborhood of 1.

4.4 Experiments

4.4.1 Single-qubit ergotropy

Figure 4.5: NMR pulse sequence for the 1-qubit FQErgo experiment. From thermal equilibrium state,
we first prepare the |00⟩ pseudopure state (PPS) which is rotated by Uθ,ϕ = e−iθ(Ix cosϕ+Iy sinϕ) to realize
the initial state ρ0. After FQErgo iterations uk = e−iβx

k Ixτe−iβy
kIyτ on the system qubit 31P (only one

iteration is shown) and Hadamard gate (H) on the probe, we extract (i) one of the drive amplitudes βx(y)

or (ii) energy E. Here the measurement pulse-sequences implement one of e−iβx(y)Iy(x)τ and e−iIzτ acting
on system 31P qubit and controlled by 19F qubit. Finally, σx measurements of 19F qubit yields drive
amplitudes βx(y) or energy E.

We now use sodium fluorophosphate (dissolved in D2O; Fig. 4.6(a)) as the two-qubit reg-

ister, wherein 19F nuclear spin is our probe qubit and 31P nuclear spin is the system qubit. All
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Figure 4.6: (a) Sodium fluorophosphate molecular structure with JFP indicated. (b) The experimentally
measured one-qubit energy (normalized) vs FQErgo iterations for three initial states ρθ,ϕ = |0⟩⟨0| ⊗
Uθ,ϕ|0⟩⟨0|U †

θ,ϕ prepared by one of the RF rotations Uθ,ϕ = e−iθ(Ix cosϕ+Iy sinϕ) ≡ (θ, ϕ) as indicated. (c)
Ergotropy estimated from (b) vs simulated values. (d) Decaying fidelities of initial states (F0(ρk), open
symbols) and corresponding growth of passive states (Fp(ρk), filled symbols) for the same three cases as
in (b). (e) Bloch sphere evolution from initial state to passive state for the same three cases.

the experiments were carried out on a 500 MHz Bruker NMR spectrometer at an ambient tem-

perature of 300 K. The rotating frame Hamiltonian of the system consisting of the internal part

and the RF drive is HFP = HFP
int + HFP

RF(t), where HFP
int = −ωFI

F
z − ωPI

P
z + 2πJFPI

F
z I

P
z and

HFP
RF(t) = ΩF(t)I

F
x + ΩP(t)I

P
x , where Ix,y,z are the spin operators. Here (ωF, ωP) and (ΩF(t),

ΩP(t)) respectively denote the adjustable frequency offsets and time-dependent RF amplitudes of
19F and 31P spins, and JFP = 868.0 Hz is the scalar coupling constant.

The pulse sequences for the NMR implementations of FQErgo are described in Fig. 4.5.

Starting from the thermal state, we prepare a pseudopure state (PPS) before energizing the system

qubit 31P into one of the three initial states ρ0 as described in Fig. 4.6. For FQErgo, we randomly

choose the initial drives βx
0 Ix and βy

0Iy, and their strengths in the kth iteration are obtained by

measuring the ancilla signal ⟨i[H0, Ix(y)]⟩ρk−1 = β
x(y)
k . Notice that all three different states reach

their common passive state within 10 iterations in Fig. 4.6 (b). The corresponding ergotropy

values show excellent agreement with the numerically simulated values in Fig. 4.6 (c), thus
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demonstrating the successful implementation of FQErgo.

In this one qubit case, since we have now measured all three expectation values ⟨σx,y,z⟩ρk, we

can now reconstruct the density matrix and determine its state fidelities F0(ρk) = Tr(ρ0ρk) with

the respective initial state, and Fp(ρk) = Tr(ρpρk) with the expected target passive state, at each

iteration. The resulting fidelity profiles are shown in Fig. Fig. 4.6 (d). They indicate the gradual

decay of the initial state fidelity and the corresponding buildup of the passive state fidelity. We

clearly find high-fidelity passive states being prepared in each of the three cases.

4.4.2 Two-qubit ergotropy

To estimate two-qubit ergotropy, we use the three-spin NMR register dibromofluoromethane (dis-

solved in Acetone-D6; Fig. 4.8 (a)). We consider 13C as the probe and 1H, 19F as the system

qubits. The rotating frame Hamiltonian consisting of the internal part and the RF drive reads as

HCHF = HCHF
int +HCHF

RF (t), whereHCHF
int = −ωCI

C
z −ωHI

H
z −ωFI

F
z +2πJCHI

C
z I

H
z +2πJCFI

C
z I

F
z +

2πJHFI
H
z I

F
z andHCHF

RF (t) = ΩC(t)I
C
x +ΩH(t)I

H
x +ΩF(t)I

F
x . Here (ωC, ωH, ωF) and (ΩC,ΩH,ΩF),

respectively denote the frequency offsets and RF amplitudes, while (JCH, JCF, JHF) denote the

scalar coupling constants, whose values are shown in Fig. 4.8 (a).

To demonstrate local and global ergotropy estimation, we prepare five initial states with vary-

ing degrees of entanglement between the system qubits H and F. The full NMR pulse-sequences

are described in the Appendix. After preparing |000⟩⟨000| we transform it to |0⟩⟨0| ⊗ ρHF
0 =

|0⟩⟨0| ⊗ UG|00⟩⟨00|U †
G using a global unitary UG consisting of a Hadamard operator on H and a

controlled e−iνIx gate on F, where ν controls the degree of entanglement. That completes the ini-

tialization, and now we start work extraction by FQErgo. During the first 10 iterations, we extract

work by using only local drives IHx(y), I
F
x(y) (similar as in Fig. 4.3 (a)) and realize the first energy

minimization corresponding to the local passive state as shown in Fig. 4.8 (c). From 11th to 20th

iterations, we extract further energy via the global drive IHx I
F
y + IHy I

F
x along with the Zδ gate and

local drives as shown in Fig. 4.3 (b) and Fig. 4.7 (b) . The global drive allows complete work ex-

traction, eventually taking the system qubits to the second energy minimization corresponding to

the global passive state ρpHF. Fig. 4.8 (b) shows the normalized energies for both local and global

extraction with initial states having varying entanglement entropy S = −Tr[ρH0 log ρH0 ], where

ρH0 = TrF(ρ
HF
0 ). Fig. 4.8 (c-d) plot the experimentally estimated local and global ergotropy
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(a)

(b)

(c)

Figure 4.7: The NMR pulse sequences for 2-qubit (1H,19F), FQEergo with one (13C) probe qubit: (a) PPS
preparation, initializing the system as ρHF

0 using entangling unitary UG after a pseudo-Hadamard on 1H.
Here delay dτ is varied to change entanglement entropy. (b) Local and global drives, where δy = e−iδIFy ,
Uxy = e−iβxyHxyτxy and the delay dβ controls the strength of the global drive. (c) Extracting global drive
strength βxy and system energy.
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Figure 4.8: (a) Molecular structure of dibromofluoromethane, with various J couplings indicated. (b)
The experimentally measured two-qubit energy (normalized) vs FQErgo iterations for five initial states
with varying entanglement entropy (S) as described in the text. (c,d) Local (c) and global (d) ergotropy
experimentally estimated from (b) vs simulated values. (d) The experimental ergotropy gap obtained from
(c,d) vs simulated values.
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values vs simulated values and Fig. 4.8 (e) plots the experimentally obtained ergotropy gaps vs

versus the simulated values. The good agreement between the estimated values and the simulated

values confirms the successful demonstration of the FQErgo algorithm.

4.5 Summary and outlook

In summary, we have introduced a feedback-based algorithm, FQErgo to prepare the passive state

and thereby quantify the ergotropy, the maximum unitarily extractable energy, of an unknown

quantum state of a given system.

It is an iterative feedback algorithm that efficiently reads certain expectation values using a

probe qubit and readjusts the subsequent drive strengths to extract further energy. The same probe

qubit also allows regular monitoring of system energy throughout the process. By numerically

implementing FQErgo over a set of random states in both one and two-qubit systems, we have

verified robust passive state preparation and ergotropy estimation, even in the presence of circuit

errors. We then experimentally implemented FQErgo on multiple initial states of two and three-

qubit NMR registers, successfully prepared their passive states, and closely estimated their local

and global ergotropies as well as the ergotropy gap.

We envisage several future directions. For instance, while ergotropy based thermodynamic

quantities can form convenient entanglement witnesses, they required prior knowledge of the

class of states (eg. [222]). FQErgo can overcome such limitations and pave the way to certify

the entanglement for a completely unknown state. Since one probe-qubit suffices, irrespective of

the system size, extending FQErgo to larger systems should be feasible without exponential com-

plexity. The procedure for extracting work from an unknown state is crucial from the perspective

of quantum batteries. Although a fully charged quantum battery may start from a known state,

subsequently during storage or partial usage it may end up in an unknown state. Although the

ensemble nature of NMR is advantageous here, the overall algorithm is general enough to adapt

to other quantum architectures.
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Closing Remarks and Outlook

In this chapter, we conclude the thesis by summarizing key findings and discussing future research

directions.

Results

In Chapter 2, we investigated various aspects of quantum battery using nuclear spin systems in

star-topology molecules in the context of NMR architecture. We theoretically and experimentally

compared the efficiency of the collective charging scheme (involving quantum correlation) with

parallel (classical) scheme and established the quantum advantage Γ =
√
N of the collective

charging scheme with N chargers. We monitored ergotropy during the whole charging dynamics

experimentally, showing the amount of work available for extraction unitarily at each point of

time. To avoid oscillatory charging, we proposed an asymptotic charging scheme to keep the

battery in a charged steady state. Finally, we introduced a load spin to which the battery can

deposit its energy after a suitable storage time, thus completing the complete charger-battery-

load circuit. Using a 38-spin system, we showed that the battery spin can store energy for up to

two minutes and yet was able to transfer the stored energy to the load spin.

In Chapter 3, We proposed a less demending thermodynamic criteria for entanglement certifi-

cation using only energy measurements or diagonal tomography. We experimentally validate the

proposed thermodynamic entanglement criterion in NMR architecture by considering particular

classes of 2-qubit, 3-qubit, and 10-qubit noisy entangled states. Our method achieves certification

for multi-qubit mixed states with three different bounds based on the thermodynamic quantifiers

of the system. Given the entanglement class of the states, i.e., Bell diagonal, Werner, GHZ, etc.,

our thermodynamic approach opens up an easy avenue to certify entanglement even when the
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knowledge about the state in question is not available.

In Chapter 4, we introduced an all-quantum feedback-based algorithm, FQErgo which re-

quires no classical optimization for ergotropy estimation from an unknown quantum state of a

given system. By numerically implementing FQErgo over a set of arbitrary states in both one-

and two-qubit systems, we have verified robust passive state preparation and ergotropy estima-

tion, even in the presence of circuit errors. We then experimentally implemented FQErgo on

multiple initial states of two and three-qubit NMR registers, successfully prepared their passive

states, and closely estimated their local and global ergotropies as well as the ergotropy gap.

Future Research Directions

A. Quantum battery– In Chapter 2, we experimentally verified that the quantum battery can

store the charge for up to 2 minutes. We can envisage several extensions of this work. For

example, if we consider a two-qubit system as a quantum battery in NMR, one can reach

even longer storage time by creating the charged state as long-lived states [172]. In this the-

sis, we have experimentally verified the working of the very basic quantum charger-battery

load circuit. One can extend this circuit by adding quantum diodes, quantum transistors,

etc., to realize a bigger circuit and pave the way to put forth a foundation of quantum elec-

tronics. It will be interesting to experimentally investigate a quantum battery in the presence

of external noise [232].

B. Entanglement cetification – There are a number of other questions for future research.

For instance, generalizing our criteria discussed in Chapter 3 for systems with arbitrary

local dimensions and generalizing to capture more exotic kinds of entanglement, such as

genuine multi-partite entanglement, would be quite important. While the local passivity in

Chapter 3 is studied under local unitary operations, more general notion of strong local pas-

sivity is introduced by considering more general local quantum operations [49, 193, 194].

Obtaining entanglement certification criteria under this generic consideration could also be

quite interesting. Our proposed thermodynamic quantities can also be helpful to identify

the faithful signature of nonclassical correlations [233]. In Chapter 3 the entanglement cer-
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tification scheme requires information on the class of the entangled staets, Using FQErgo

discussed in Chapter 4 for reaching passive state one can certify entanglement even without

knowing the class of entangled states. Such experimental findings will create a great impact

among scientific communities.

C. Feedback method– In chapter 4, we have carried out a feedback experiment to transform

a quantum system in an arbitrary unknown initial state to its passive state, and thereby

determined its ergotropy. In principle, this feedback method can be extended to other tasks

in quantum information processing or quantum simulations.
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