QUASIHYPERBOLIC METRIC AND QUASICONFORMAL MAPPINGS

Swadesh Kumar Sahoo

swadesh 'at' iitm.ac.in

Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, India

February 18, 2010

OUTLINE

- DEFINITIONS AND EXAMPLES
- **2** Uniform domains and characterizations
- 3 φ -UNIFORM DOMAINS AND UNIFORM CONTINUITY
- **4** Mapping properties
- **6** OPEN PROBLEMS
- **6** REFERENCES

THE QUASIHYPERBOLIC DISTANCE

- **1** Given $x, y \in G \subset \mathbb{R}^n$, $\Gamma(x, y)$ stands for the collection of all rectifiable paths $\gamma \subset G$ joining x and y.
- 2 The quasihyperbolic distance [GP76] between $x, y \in G \subsetneq \mathbb{R}^n$ is defined by

$$k_G(x,y) := \inf_{\gamma \in \Gamma(x,y)} \int_{\gamma} \frac{1}{\operatorname{dist}(z,\partial G)} |dz|.$$

- 3 For a given pair of points $x, y \in G$, the infimum is always attained [GO79], i.e. there always exists a quasihyperbolic geodesic γ_k which minimizes the above integral.
- F.W. GEHRING AND B.P. PALKA, Quasiconformally homogeneous domains, *J. Anal. Math.* **30** (1976), 172–199.
- F.W. GEHRING AND B.G. OSGOOD, Uniform domains and the quasihyperbolic metric, *J. Anal. Math.* **36** (1979), 50–74.

EXAMPLES

- It is monotone: $k_{G_1}(x, y) \le k_{G_2}(x, y)$ whenever $x, y \in G_2 \subset G_1$.
- In the punctured space Rⁿ \ {0} the quasihyperbolic distance is given by the formula [MO86]

$$k_{\mathbb{R}^n\setminus\{0\}}(x,y) = \sqrt{\theta^2 + \log^2 \frac{|x|}{|y|}}$$
, where θ is the angle between the segments $[0,x]$ and $[0,y]$, $0<\theta<\pi$.

G. MARTIN AND B.G. OSGOOD, The quasihyperbolic metric and the associated estimates on the hyperbolic metric, *J. Anal. Math.* **47** (1986), 37–53.

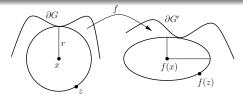
QUASICONFORMAL MAPPINGS

• Let $f: G \to G'$ be a homeomorphism, where $G, G' \subset \mathbb{R}^n$. The linear dilatation of f at a point $x \in G \setminus \partial G$ is defined by

$$H(x,f) = \lim_{r \to 0^+} \frac{\max_{z} \{ |f(z) - f(x)| : |z - x| = r \}}{\min_{z} \{ |f(z) - f(x)| : |z - x| = r \}}$$

for $0 < r \le \operatorname{dist}(x, \partial G)$.

A homeomorphism f: G → G' is said to be
K-quasiconformal (K-qc), K ≥ 1, if there exists a constant
K < ∞ such that H(x, f) ≤ K for all x ∈ G \ ∂G. Observe
that conformal maps are 1-qc.



EXAMPLES

1 A homeomorphism $f: G \rightarrow G'$ satisfying

$$|x-y|/L \le |f(x)-f(y)| \le L|x-y|$$

for all $x, y \in G$ is called L-bilipschitz map.

Note: L-bilipschitz maps are L^2 -quasiconformal.

2 For $K \ge 1$, the function

$$f(x) = |x|^{\frac{1}{K}-1}x, \ f(0) = 0, \quad x \in \mathbb{R}^n,$$

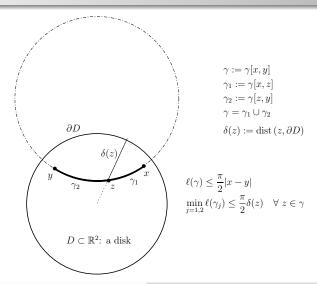
is K-qc.

3 For $|\alpha|$ < 1, the function

$$f(z) = \begin{cases} z^{1+\alpha} & \text{for Im } z \ge 0\\ z\overline{z}^{\alpha} & \text{for Im } z < 0 \end{cases}$$

defines a $K(\alpha)$ -qc automorphism of \mathbb{C} , where $K(\alpha) = (1 + |\alpha|)/(1 - |\alpha|)$.

ARC-LENGTH PROPERTY



LEMMA [GEH99]

Let $D \subset \mathbb{R}^2$ be a disk. For every $x, y \in D$, there exists a constant c > 0 and a rectifiable path $\gamma \subset D$ joining x and y such that

- ② $\min_{j=1,2} \ell(\gamma_i) \le c \operatorname{dist}(z, \partial D)$, for all $z \in \gamma$, where γ_1 and γ_2 are the components of $\gamma \setminus \{z\}$.

F.W. GEHRING, Characterizations of quasidisks, Quasiconformal geometry and dynamics, Banach center publications, Vol 48, Polish Academy of Sciences, Warszawa 1999.

EXAMPLES

There are many cases, where the above two properties do hold and do not hold. For example,

- **Do hold:** half-plane, square, triangle, annulus, any bounded convex domain, snowflake region.
- Do not hold: parallel strip, disk with a radial slit, apple shaped region, complement of half-strip, onion shaped region, the complex plane with two distinct slits aligned in a line.

UNIFORM DOMAINS AND CHARACTERIZATIONS

UNIFORM DOMAINS [MS79]

A domain $G \subset \mathbb{R}^n$ is said to be uniform if any pair of points $x,y \in G$ can be joined by a rectifiable path $\gamma \subset G$ such that γ satisfies

- $\mathbf{2} \min_{j=1,2} \ell(\gamma_i) \leq c \operatorname{dist}(z, \partial G), \text{ for all } z \in \gamma;$

for some constant c > 0, where γ_1 and γ_2 are the components of $\gamma \setminus \{z\}$.

O. MARTIO AND J. SARVAS, Injectivity theorems in plane and space, *Ann. Acad. Sci. Fenn. Math.* **4** (1979), 384–401.

We need characterizations.

CHARACTERIZATIONS OF UNIFORM DOMAINS

Lemma [Ahl63, MS79]. A simply connected Jordan domain (bounded) $G \subset \mathbb{R}^2$ is uniform if and only if there exists a constant c > 0 such that for each pair of points $a, b \in \partial G$ we have $\min_{j=1,2} \operatorname{diam}(\gamma_j) \le c |a-b|$

where γ_1, γ_2 are the components of $\partial G \setminus \{a, b\}$.

L. V. AHLFORS, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.

IN TERMS OF THE QUASIHYPERBOLIC METRIC [GO79]

A domain $G \subsetneq \mathbb{R}^n$ is uniform if and only if there exist some positive constants c and d such that

$$k_G(x,y) \le c \log \left(1 + \frac{|x-y|}{\min\{\delta(x),\delta(y)\}}\right) + d$$

for all $x, y \in G$, where $\delta(x) = \text{dist}(x, \partial G)$.

F.W. GEHRING AND B.G. OSGOOD, Uniform domains and the quasihyperbolic metric, *J. Anal. Math.* **36** (1979), 50–74.

IN TERMS OF THE QUASIHYPERBOLIC METRIC [VU85]

A domain $G \subsetneq \mathbb{R}^n$ is uniform if and only if there exists a positive constant c such that

$$k_G(x, y) \le c \log \left(1 + \frac{|x - y|}{\min\{\delta(x), \delta(y)\}}\right)$$

for all $x, y \in G$.

M. VUORINEN, Conformal invariants and quasiregular mappings, *J. Anal. Math.* **45** (1985), 69–115.

φ -UNIFORM DOMAINS

φ -uniform domains [Vu85]

• Let $\varphi: [0,\infty) \to [0,\infty)$ be a continuous strictly increasing function with $\varphi(0) = 0$. A domain $G \subsetneq \mathbb{R}^n$ is said to be φ -uniform if

$$k_G(x,y) \le \varphi(|x-y|/\min\{\delta(x),\delta(y)\})$$
 for all $x,y \in G$.

• Consider domains G satisfying the following property: there exists a constant $C \ge 1$ such that each pair of points $x, y \in G$ can be joined by a rectifiable path $\gamma \in G$ with

$$\ell(\gamma) \leq C |x - y|$$
 and $d(\gamma, \partial G) \geq \min\{\delta(x), \delta(y)\}/C$.

Then *G* is φ -uniform with $\varphi(t) = C^2 t$.

• In particular, every convex domain is φ -uniform with $\varphi(t)=t$.

UNIFORM CONTINUITY

UNIFORM CONTINUITY

Let (X_j, d_j) , j = 1, 2, be metric spaces. A function $f: X_1 \to X_2$ is said to be *uniformly continuous* if there exists a function, *modulus of continuity* $\omega: [0, r_1) \to [0, r_2)$ such that $\omega(0) = 0$ and $\omega(t) \to 0$, as $t \to 0$, and for all $x, y \in X_1$ with $d_1(x, y) < r_1$ we have $d_2(f(x), f(y)) \le \omega(d_1(x, y)) < r_2$.

EXAMPLE

For
$$x, y \in B^n$$
 let $t = \sqrt{(1 - |x|^2)(1 - |y|^2)}$. Then $|x - y| \le 2 \tanh \frac{\rho_{B^n}(x, y)}{4} = \frac{2|x - y|}{\sqrt{|x - y|^2 + t^2} + t}$,

where equality holds for x=-y. In particular, the identity map $id:(B^n,\rho_{B^n})\to (B^n,|.|)$ is uniformly continuous with the modulus of continuity $\omega(t)=2\tanh(t/4)$.

QUASIHYPERBOLIC COUNTERPART [KSV]

If $x, y \in B^n$ are arbitrary and $w = |x - y| e_1/2$, then

$$k_{B^n}(x,y) \ge k_{B^n}(-w,w) = 2 \log \frac{2}{2-|x-y|} \ge |x-y|,$$

where the first inequality becomes equality when y = -x.

The modulus of continuity: $\omega(t) = 2(1 - e^{-t/2})$.

R. KLÉN, S.K. SAHOO, AND M. VUORINEN, Uniform continuity and φ -uniform domains, arXiv:0812.4369v3 [math.MG], preprint.

GENERALIZATION TO BOUNDED DOMAINS IN \mathbb{R}^n [KSV]

Let $G \subseteq \mathbb{R}^n$ be a domain with diam $G < \infty$ and $r = \sqrt{n/(2n+2)}$ diam G. Then we have

$$k_G(x,y) \geq 2 \log \left(\frac{2}{2-t}\right) \geq t = |x-y|/r$$

for all distinct $x, y \in G$ with equality in the first step when $G = B^{n}(z, r)$ and z = (x + y)/2.

FOR THE PROOF, WE USE JUNG'S THEOREM [BER87]

Let $G \subset \mathbb{R}^n$ be a domain with diam $G < \infty$. Then there exists $z \in \mathbb{R}^n$ such that $G \subset B^n(z,r)$, where $r \leq \sqrt{n/(2n+2)}$ diam G.

M. Berger, *Geometry I*, Springer-Verlag, Berlin, 1987.

Theorem (Characterization of φ -uniform domains [KSV])

The identity mapping id : $(G, j_G) \rightarrow (G, k_G)$ is uniformly continuous if and only if G is φ -uniform, where j_G is defined by

$$j_G(x,y) = \log\left(1 + \frac{|x-y|}{\min\{\delta(x),\delta(y)\}}\right).$$

Proof.

Sufficiency part is trivial. Indeed, for $x, y \in G$ we have

$$k_G(x,y) \le \varphi(\exp(j_G(x,y))-1) = \omega(j_G(x,y)), \quad \omega(t) = \varphi(e^t-1).$$

For the necessary part, we define

$$\varphi(t) = \sup\{k_G(x, y) : j_G(x, y) \le t\} \quad t \ge 0.$$

Quasisymmetric maps and φ -uniform domains

QUASISYMMETRIC MAPS

Let $\eta:[0,\infty)\to[0,\infty)$ be a continuous strictly increasing function with $\eta(0)=0$. A homeomorphism $f:(G,d_G)\to(G',d_{G'})$ is said to be η -quasisymmetric (η -QS) if

$$\frac{d_{G'}(f(x),f(y))}{d_{G'}(f(y),f(z))} \le \eta \left(\frac{d_{G}(x,y)}{d_{G}(y,z)}\right)$$

for all $x, y, z \in G$ with $y \neq z$.

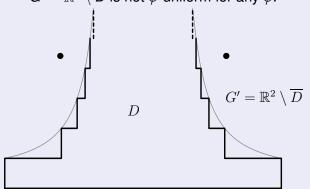
QUESTION!

Can we say that the identity map $id: (G, j_G) \to (G, k_G)$ is η -QS if and only if G is φ -uniform for some φ depending on η ?

Complement of φ -uniform domains [KSV]

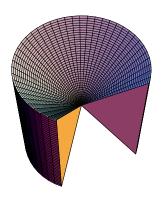
 Complimentary domains of simply connected uniform domains are uniform in the complex plane [Ahl63, MS79].

An unbounded φ_1 -uniform domain $D \subset \mathbb{R}^2$ whose complement $G' = \mathbb{R}^2 \setminus \overline{D}$ is not φ -uniform for any φ .



QUESTION!

Are there any bounded φ_1 -uniform domains whose complements are not φ -uniform?



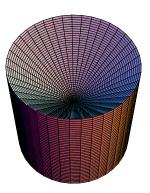


Image of φ -uniform domains under bilipschitz mappings [KSV]

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be an *L*-bilipschitz mapping, that is

$$|x-y|/L \le |f(x)-f(y)| \le L|x-y|$$

for all $x, y \in \mathbb{R}^n$. If $G \subsetneq \mathbb{R}^n$ is φ -uniform, then f(G) is φ_1 -uniform with $\varphi_1(t) = L^2 \varphi(L^2 t)$.

QUESTION!

Can we ask a similar question for quasiconformal mappings?

REMARK

Conformal images of the unit disk need not be uniform in general!

QUASI-INVARIANCE PROPERTY OF THE QUASIHYPERBOLIC METRIC [GO79]

If f is a K-quasiconformal map of $G \subseteq \mathbb{R}^n$ onto $G' \subseteq \mathbb{R}^n$, then there exists a constant *c* depending only on *n* and *K* such that

$$k_{G'}(f(x), f(y)) \le c \max\{k_G(x, y), k_G(x, y)^{\alpha}\}$$

for all $x, y \in G$, where $\alpha = K^{1/(1-n)}$.

QUASI-INVARIANCE PROPERTY OF THE *j*_G-METRIC [GO79]

If f is a K-quasiconformal map of \mathbb{R}^n which maps $G \subseteq \mathbb{R}^n$ onto $G' \subseteq \mathbb{R}^n$, then there exist constants c and d depending only on n and K such that

$$j_{G'}(f(x), f(y)) \leq c j_G(x, y) + d$$

for all $x, y \in G$.

QUASI-INVARIANCE PROPERTY OF THE *j*-METRIC [HKSV]

If f is a K-quasiconformal map of \mathbb{R}^n which maps G onto G', then there exists a constant C depending only on n and K such that

$$j_{G'}(f(x), f(y)) \le C \max\{j_G(x, y), j_G(x, y)^{\alpha}\}\$$

for all $x, y \in G$, where $\alpha = K^{1/(1-n)}$.

INVARIANCE PROPERTY OF φ -UNIFORM DOMAINS [HKSV]

Suppose that $G \subseteq \mathbb{R}^n$ is a φ -uniform domain and f is a quasiconformal map of R^n which maps G onto $G' \subseteq R^n$. Then G' is φ_1 -uniform for some φ_1 as well.

P. HÄSTÖ, R. KLÉN, S.K. SAHOO, AND M. VUORINEN, Geometric properties of φ -uniform domains, *In preparation*.

OPEN PROBLEM

Open problems

- In simply connected planar domains uniform domains are associated with the quasiconformal maps of the whole plane \mathbb{R}^2 , because uniform domains are nothing but quasidisks. What can we say about φ -uniform domains?
- If a domain $G \subsetneq \mathbb{R}^n$ and its complement $\mathbb{R}^n \setminus \overline{G}$ are φ -uniform, is it true that G is uniform?
- In the case of φ -uniform domains, are there any conditions on φ which imply that a geometric condition similar to uniformity condition holds?

REFERENCES

- L.V. AHLFORS, *Lectures on quasiconformal mappings*, Van Nostrand, Princeton, 1966.
- A.F. BEARDON, The geometry of discrete groups, Graduate Texts in Mathematics, Vol. 91, Springer-Verlag, Berlin and New York, 1983.
- O. LEHTO AND K.I. VIRTANEN, Quasiconformal mappings in the plane, Springer-Verlag, New York, 1973.
- J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, 1971.
- M. VUORINEN, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics 1319, Springer-Verlag, Berlin-Heidelberg-New York, 1988.

THANK YOU