Calculus on Manifolds (Jan-Apr 2020)

Assignment 1

January 2, 2020
(Will not be graded)

1. Suppose $A \subset \mathbb{R}^{m}$ and $\vec{a} \in A$ is such that there is a neighbourhood U of \vec{a}. Let $f: A \rightarrow \mathbb{R}^{n}$ be a function which is given to be differentiable at \vec{a}. Prove that f is continuous at \vec{a}.
2. Let $A \subset \mathbb{R}^{m}$ and $f: A \rightarrow \mathbb{R}^{n}$ be a function differentiable at \vec{a}. Then prove that all the directional derivatives of f at \vec{a} exist and

$$
f^{\prime}(\vec{a}, \vec{u})=\mathbf{D} f(\vec{a}) \vec{u} .
$$

3. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the map defined by

$$
f(x, y)= \begin{cases}(0,0) & \text { if }(x, y)=(0,0) \\ \frac{x^{2} y}{x^{4}+y^{2}} & \text { otherwise }\end{cases}
$$

Show that all the directional derivatives of f exist at $(0,0)$ but f is not differentiable at $(0,0)$.
4. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable functions. Then

$$
\begin{align*}
\mathbf{D}(f g) & =f \mathbf{D} g+g \mathbf{D} f \tag{1}\\
\mathbf{D}\left(\frac{1}{f}\right) & =-\frac{1}{f^{2}} \mathbf{D} f \text { whenever } f \neq 0 \tag{2}
\end{align*}
$$

5. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be differentiable. If $\|f(t)\|=1$ for all $t \in \mathbb{R}$, prove that $f(t) \cdot \mathbf{D} f(t)=0$.
6. Define

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that $D_{1} f$ and $D_{2} f$ exist at every point of \mathbb{R}^{2}. Is the function differentiable everywhere?
7. Define

$$
f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Prove that $D_{1} f$ and $D_{2} f$ are bounded functions in a neighbourhood of $(0,0)$.
(b) Using this prove that f is continuous everywhere.
(c) Let \vec{u} be any unit vector in \mathbb{R}^{2}. Prove that $D_{\vec{u}} f(0,0)$ exists and $\left|D_{\vec{u}} f(0,0)\right| \leq 1$.
(d) Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be any differentiable map such that $\left.\gamma(0)=(0,0)\right)$ and $\left\|\gamma^{\prime}(0)\right\|>0$. Prove that $g(t)=f(\gamma(t))$ is differentiable for all $t \in \mathbb{R}$. If γ is of the class C^{1}, prove that so is g.
(e) Prove that f is not differentiable at $(0,0)$.
8. Suppose $A \subset \mathbb{R}^{n}$ be an open and connect subset. Let $f: A \rightarrow \mathbb{R}$ be a differentiable function with $\mathbf{D} f(\vec{x})=0$ for all $\vec{x} \in A$. Prove that f is constant on A.
9. In the following cases, find the points around which an inverse function exists
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(t)=t^{2}$.
(b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, where

$$
f\binom{x}{y}=\binom{x^{3}+x y+y^{3}}{x^{2}-y^{2}}
$$

In the second problem can you find the approximate value of

$$
f^{-1}\binom{3.01}{-0.01} \text { given the fact that } f\binom{1}{1}=\binom{3}{0} \text {. }
$$

10. Let $L=\left\{\left.\vec{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x_{1}+x_{2}+x_{3}+1=0\right\}$. Consider the function $f: \mathbb{R}^{3} \backslash L \rightarrow \mathbb{R}^{3}$ defined by

$$
f\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\frac{1}{1+x_{1}+x_{2}+x_{3}}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

Find $f\left(\mathbb{R}^{3} \backslash L\right)$ and compute $\operatorname{det} \mathbf{D} f(\vec{x})$ for $\vec{x} \in \mathbb{R}^{3} \backslash L$. Compute f^{-1} explicitly.
11. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function of the class C^{1} and $g_{1}, \ldots, g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be n real functions of class C^{1}. Let $h\left(x_{1}, \ldots, x_{n}\right)=f\left(g_{1}\left(x_{1}\right), \ldots, g_{n}\left(x_{n}\right)\right)$. Prove that

$$
\operatorname{det} \mathbf{D} h(\vec{x})=\operatorname{det} \mathbf{D} f\left(g_{1}\left(x_{1}\right), \ldots, g_{n}\left(x_{n}\right)\right) g_{1}^{\prime}\left(x_{1}\right) \cdots g_{n}^{\prime}\left(x_{n}\right)
$$

