Quiz 4

November 6, 2015

Blanket assumption: We work over the field of rationals, \mathbb{Q}.
The following problems is a single problem broken up into steps. So notations and hypotheses in each problem carries on to the subsequent problems.

Problem 1. Let ω be a primitive 11-th root of unity. Let $x=\omega+\frac{1}{\omega}$. For $i=2,3,4,5$ write $\alpha_{i}:=\omega^{i}+\frac{1}{\omega^{i}}$ as an i degree polynomial in x. (For example, $\alpha_{2}=x^{2}-2$. Why?) (3)

Problem 2. Noting that $\alpha_{1}=x$, prove that $1+\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}=0$. Substituting the polynomials from the previous problem show that x satisfies the polynomial:

$$
P(X)=X^{5}+X^{4}-4 X^{3}-3 X^{2}+3 X+1 .
$$

(Don't worry if there is a slight mistake and you do not get the exact form above. If the idea is correct you get full score.)

Assume that the P is irreducible and is the minimal polynomial of x over \mathbb{Q}.
Problem 3. Prove that the Galois group of $\mathbb{Q}(x) / \mathbb{Q}$ is $\frac{\mathbb{Z}}{5 \mathbb{Z}}$.
Problem 4. Is this Galois group solvable?

