Quiz 3

October 16, 2015

Problem 1. Suppose $p(X)$ be a cubic polynomial over some field F such that it has multiple roots in the splitting field. Show that $p(X)$ has a linear factor in $F[X]$. Is the same true for quartics (degree 4 polynomials)?

Problem 2. Suppose x, y and z are complex numbers such that they satisfy the following three equations:

$$
\begin{aligned}
x+y+z & =1 \\
x^{2}+y^{2}+z^{2} & =2 \\
x^{3}+y^{3}+z^{3} & =3
\end{aligned}
$$

Take it for granted that x, y and z can be irrational. Prove that $x^{n}+y^{n}+z^{n}$ is rational for every n. $\left(\right.$ hint $\left.^{1}\right)$

Problem 3. Prove that an extension of degree 2 is Galois.

[^0]
[^0]: ${ }^{1}$ Hint: Consider the field of symmetric functions we saw in the last tutorial.

