Assignment 8

October 30, 2015

Problem 1. Do Exercises 92, 93 and 94 from Rotman, Galois Theory, page 90.

Problem 2. Let E/F be a Galois extension, where F is a field of characteristic p > 0. Let $\sigma \in \text{Gal}(E/F)$ have order p. View σ as a F-linear transformation on E and define the F-linear transformation

$$\tau = \sigma - \mathrm{id}$$
.

- (1) Prove that $\tau^p = 0$.
- (2) Prove that if $\alpha \in \ker \tau + \operatorname{im} \tau$, then $\tau^{p-1}(\alpha) = 0$. Conclude $\tau(\alpha) = 0$.
- (3) Prove that ker $\tau = F$ and im $\tau \cap \ker \tau \neq \{0\}$.
- (4) By proving im $\tau \cap \ker \tau = F$, conclude that $1 \in \operatorname{im} \tau$. In other words, there exists $\alpha \in E$ such that $\sigma(\alpha) \alpha = 1$.
- (5) Prove that if E/F has degree p and $\operatorname{Gal}(E/F) = \langle \sigma \rangle$, $E = F(\alpha)$ where α is the root of the irreducible polynomial of the form $X^p X c \in F[X]$.

Problem 3. Determine the Galois groups of the following polynomials in $\mathbb{Q}[X]$:

(1) $X^3 - X^2 - 4$.

- (2) $X^3 2X + 4$,
- (3) $X^3 X + 1$, and
- (4) $X^3 + X^2 2X 1.$