Assignment 4

September 4, 2015

Problem 1. Are the fields

$$\frac{\mathbb{F}_2[X]}{(X^3 + X^2 + 1)}$$
 and $\frac{\mathbb{F}_2[Y]}{(Y^3 + Y + 1)}$

isomorphic? Can you construct such an isomorphism? $(hint^1)$

Problem 2. Find the degree of the splitting field of $(X^2 - 2)(X^2 - 3)$ over \mathbb{Q} .

Problem 3. Write down a polynomial over \mathbb{Q} whose splitting field is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. What can you say about $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q})$?

Problem 4. Prove that $\alpha_1, \ldots, \alpha_n \in E$ for some field extension E/F. Prove that

$$F(\alpha_1, \dots, \alpha_n) = \left\{ \frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)} \middle| f, g \in F[X_1, \dots, X_n] \text{ and } g(\alpha_1, \dots, \alpha_n) \neq 0 \in E \right\}.$$

Problem 5. Prove that if $f(X) \in F[X]$ is a polynomial over a field F, and E/F is a splitting field of f, and if $\alpha_1, \ldots, \alpha_n$ are the roots of f in E, then $E = F(\alpha_1, \ldots, \alpha_n)$.

Problem 6. If R is a ring and if $c \in R$, prove that the map

$$\psi_c: R[X] \to R[X]$$

given by $(\psi_c(f))(X) = f(X+c)$ is an isomorphism and conclude that in the case R is a field, p(X) is irreducible iff $\psi_c(p)$ is irreducible.

Problem 7. Let p(X) be a monic polynomial in $\mathbb{Z}[X]$. Prove that any rational root of p has to be an integer. (hint²)

Problem 8. Suppose $f(X) \in F[X]$ be an irreducible polynomial of degree n. Let E/F be the splitting field of f(X). Prove that n|[E : F]. If f is separable, prove that $n|\operatorname{Gal}(E/F)$.

¹*Hint:* $X \mapsto Y + 1$.

²*Hint:* Prove that if r/s is a root of $p(X) = a_0 + a_1X + \cdots + a_kX^k$, then $r|a_0$ and $s|a_k$.