Assignment 3

Problem 1. Suppose $F \subset E$ and $E \subset K$ are finite field extensions. Suppose $\left\{e_{1}, \ldots, e_{m}\right\}$ is a basis of E as a vector space over F and $\left\{k_{1}, \ldots, k_{n}\right\}$ is a basis of K as a vector space over F. Prove that $\left\{e_{i} k_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ is a basis of K over F and hence

$$
[K: F]=[K: E][E: F] .
$$

Problem 2. Consider the extension $\mathbb{Q} \subset \mathbb{R}$. Let $\sqrt[3]{2}$ be the real root of the equation $X^{3}-2=0$. Prove that

$$
\mathbb{Q}(\sqrt[3]{2})=\left\{a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \mid a, b, c \in \mathbb{Q}\right\}
$$

Problem 3. Consider $\mathbb{Q} \subset \mathbb{C}$ and $\alpha=\sqrt[3]{2} \omega \in \mathbb{C}$ where $\omega=\frac{-1+\sqrt{-3}}{2}$ is a complex cube root of 1 . Then $\alpha^{3}-2=0$. Prove that $\mathbb{Q}(\alpha) \cong \mathbb{Q}(\sqrt[3]{2})$.

Problem 4. Show that $p(X)=X^{3}+9 X+6$ is irreducible in $\mathbb{Q}[X]$. Let θ is a root of $p(X)$ in some extension K. Find the inverse of $1+\theta$ in $\mathbb{Q}(\theta)$.

Problem 5. Prove that the polynomial $\left(X^{p-1}-1\right) /(X-1)$ is irreducible in $\mathbb{Q}[X]$ for any prime p. $\left(\right.$ hint $\left.^{1}\right)$

Problem 6. Determine the degree of the extension $\mathbb{Q}(\sqrt{3+2 \sqrt{2}})$ over \mathbb{Q}.
Problem 7. What is the irreducible polynomial of $1+i \in \mathbb{C}$ over \mathbb{Q} ?
Problem 8. Let $F=\mathbb{Q}(i)$. Prove that $X^{3}-2$ and $X^{3}-3$ are irreducible over F.
Problem 9. Factor $X^{9}-X$ in $\frac{\mathbb{Z}}{3 \mathbb{Z}}[X]$. Prove that the factors you get are irreducible in $\frac{\mathbb{Z}}{3 \mathbb{Z}}[X]$.

Problem 10. Suppose F is a field and α is an algebraic element in some extension, such that α satisfies an irreducible polynomial of degree 5 over F. Prove that $F(\alpha)=F\left(\alpha^{2}\right)$.

[^0]
[^0]: ${ }^{1}$ Hint: \quad Substitute $Y=X-1$.

