Assignment 2

```
August 21, 2015
```

Problem 1. If R is a field, prove that the map $R \rightarrow \operatorname{Frac}(R)$ given by $a \mapsto a / 1$ is an isomorphism.

Problem 2. If R and S are domains and $\varphi: R \rightarrow S$ is an isomorphism. Prove that there is an isomorphism $\hat{\varphi}: \operatorname{Frac}(R) \rightarrow \operatorname{Frac}(S)$ given by $\hat{\varphi}(a / b)=\varphi(a) / \varphi(b)$.

Problem 3. If R is a ring, prove that $\varphi: R[X] \rightarrow R$ given by $\varphi(f(X))=f_{0}$, where $f(X)=f_{0}+f_{1} X+\cdots+f_{n} X^{n}$ is a ring map. What is $\operatorname{ker} \varphi$?

Problem 4. Prove that if R is a commutative ring with 1 and $I \subset R$ is an ideal, then there is a one to one correspondence

$$
\left\{\begin{array}{c}
\text { ideals } J \text { in } R \\
\text { such that } I \subset J \subset R
\end{array}\right\} \leftrightarrow\{\text { ideals } \bar{J} \text { of } R / I\}
$$

given by $J \mapsto J / I$ and $\bar{J} \mapsto J=\{r \in R| |[r] \in \bar{J}\}$.
Problem 5. Use Euclidean algorithm to find the gcd of $X^{4}+X^{2}+1$ and $X^{3}-1$ in $\mathbb{Q}[X]$. Write the gcd as a $\mathbb{Q}[X]$ linear combination of the two given polynomials.

Problem 6. Consider $X^{4}+X^{2}+1$ and $X^{3}-1$ as elements of $\frac{\mathbb{Z}}{3 \mathbb{Z}}[X]$. Are these irreducible? Do these polynomials split in $\frac{\mathbb{Z}}{3 \mathbb{Z}}[X]$? If so what are the linear factors?

