Assignment 1

August 14, 2015

Problem 1. If R is a ring and S is a set. Let

$$
R^{S}=\{f| | f \text { is a function } f: S \rightarrow R\} .
$$

Prove that R^{S} is a ring with respect to pointwise addition and multiplication: $(f+g)(s)=f(s)+g(s)$ and $(f g)(s)=f(s) g(s)$.

Problem 2. Show that there is a factorization $x=f(x) g(x)$ in $R=\frac{\mathbb{Z}}{4 \mathbb{Z}}[x]$ where neither $f(x)$ and $g(x)$ is a constant (hint ${ }^{1}$). Give an example of a non-constant polynomial in R which is a unit.

Problem 3. Can you construct an infinite field containing $\frac{\mathbb{Z}}{p \mathbb{Z}}$ as a subfield?

Problem 4. Suppose $\sigma: R \rightarrow S$ is a ring map, prove that $\sigma^{*}: R[x] \rightarrow$ $S[x]$ defined by

$$
\sigma^{*}\left(\sum r_{i} x^{i}\right)=\sum \sigma\left(r_{i}\right) x^{i}
$$

is also a ring map. If $\tau: S \rightarrow T$ is a ring map prove that $(\tau \sigma)^{*}=\tau^{*} \sigma^{*}$. If σ is an isomorphism, then so is σ^{*}.

Problem 5. Prove that if $u \in R$ is a unit, and $f \in R$ is any element, then

$$
(f)=(u f) .
$$

If R is a domain and if $r, s \in R$ are such that $(r)=(s)$, then $s=u r$ for some unit $u \in R$.

Problem 6. Find the gcd of $f(x)=x^{3}-x$ and $g(x)=x^{2}+2 x+1$ in $\mathbb{Q}[x]$ using Euclidean algorithm. Can you write the gcd as a $\mathbb{Q}[x]$-linear combination of $f(x)$ and $g(x)$?

Problem 7. Consider the map $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{R}$ defined by $\varphi(f(x))=$ $f(1+\sqrt{2})$. Is this a ring homomorphism? What is the kernel?

Problem 8. Let R be a ring such that $\underbrace{1+\cdots+1}_{p \text { times }}=0$. Prove that the $\operatorname{map} \varphi: R \rightarrow R$ defined by $\varphi(x)=x^{p}$ is a ring homomorphism. Prove that if $a \in R$ satisfies $a^{n}=0$ for some $n>0 \in Z$, then there exists an interger $m>0$ such that $(1+a)^{m}=1$.

[^0]Problem 9. There is a bijective correspondence between the maximal ideals of $\mathbb{R}[x]$ and points of upper half plane.

Problem 10. Is $\left\{a+b \epsilon| | a, b \in \mathbb{Q}, \epsilon^{2}=0\right\}$ a ring? What are its ideals? Maximal ideals? Prime ideals?

[^0]: ${ }^{1}$ Hint: What is $(2 x+1)^{2}$?

