
04_04_file_strings_dict

Unknown Author

April 1, 2014

Part I

Data I/O, Strings, Dictionary

1 Data I/O

In this lecture we shall concentrate on a few more programming tools which might be useful to you later. Let us try to
write a simple interpreter today. In the process we shall learn how to write to a file and recall reading from a file.

1.1 Reading data from the screen

This you already do using input. Some of you already use raw_input, though I did not do it in class. Today I’ll
formally introduce it. Raw input directly stores the input in a string. You can later process the string in any way you
want.

In [1]:

s = raw_input("Input anything : ")
print type(s)
print s
slst = s.split()
varname = slst[0]
varvalue = float(slst[1])
print "%s has value %f." % (varname, varvalue)

Input anything : a 7
<type ’str’>
a 7
a has value 7.000000.

1.2 Command line input

Sometimes one runs a program where the input to the program is passed via the command line. It is easy to do that in
python. For that one has to import a package called sys.

In [2]:

program = \
"""
import sys

x = float(sys.argv[1])
print x*x
"""

progfile = open("files/myprogfile.py", ’w’)
progfile.write(program)
progfile.close()

To see that it works, we can print the file

In [3]:

progfile = open("files/myprogfile.py", ’r’)
print progfile.read()
progfile.close()

import sys

x = float(sys.argv[1])
print x*x

In [4]:

#%run "files/myprogfile.py"

In [5]:

%run "files/myprogfile.py" 1.5

2.25

1.3 Raising errors

Till now we had been trying to deal with errors using conditionals. However to make the program more readable, one
is encouraged to use the try..except mechanism provided in python.

In [6]:

xstr = raw_input("Test :")
x = float(xstr)

Test :34.3

In [7]:

def read_number() :
xstr = raw_input("Input a number : ")
try :

x = float(xstr)
except ValueError :

raise ValueError(’Cannot understand the number %s.’ % xstr)
return x

In [8]:

try :
x = read_number()

except ValueError, e :
print e
sys.exit(1)

print x*x

Input a number : 23.4
547.56

2 Strings

Some examples of what you can do with strings.

In [9]:

eg_str = "This is a sentence. This is another sentence.\nThis is the second line. This is the second\nsentence \
which started in the second line but\nended in the fourth line."
print eg_str

This is a sentence. This is another sentence.
This is the second line. This is the second
sentence which started in the second line but
ended in the fourth line.

In [10]:

Substrings
eg_str[10:20]

Out [10]:

’sentence. ’

In [11]:

print "The word ’sentence’ begins at %d, whereas the word ’sentience’ \
starts at %d." % (eg_str.find(’sentence’), eg_str.find(’sentience’))

The word ’sentence’ begins at 10, whereas the word ’sentience’ starts
at -1.

In [12]:

Also in works
print (’sentence’ in eg_str)
print (’starts’ in eg_str)

True
False

In [13]:

print ’health’.startswith(’heal’)
print ’Python’.endswith(’tail’)

True
False

In [14]:

Replace
print eg_str.replace(’sentence’, ’verdict’)

This is a verdict. This is another verdict.
This is the second line. This is the second
verdict which started in the second line but
ended in the fourth line.

In [15]:

print eg_str.split()
print eg_str.splitlines()
print eg_str.split(’a’)
print eg_str.split(’.’)
for str in eg_str.split(’.’) :

print str

[’This’, ’is’, ’a’, ’sentence.’, ’This’, ’is’, ’another’, ’sentence.’,
’This’, ’is’, ’the’, ’second’, ’line.’, ’This’, ’is’, ’the’, ’second’,
’sentence’, ’which’, ’started’, ’in’, ’the’, ’second’, ’line’, ’but’,
’ended’, ’in’, ’the’, ’fourth’, ’line.’]
[’This is a sentence. This is another sentence.’, ’This is the second
line. This is the second’, ’sentence which started in the second line
but’, ’ended in the fourth line.’]
[’This is ’, ’ sentence. This is ’, ’nother sentence.\nThis is the
second line. This is the second\nsentence which st’, ’rted in the
second line but\nended in the fourth line.’]
[’This is a sentence’, ’ This is another sentence’, ’\nThis is the
second line’, ’ This is the second\nsentence which started in the
second line but\nended in the fourth line’, ’’]
This is a sentence
This is another sentence

This is the second line
This is the second
sentence which started in the second line but
ended in the fourth line

In [16]:

Checking type of characters in a string
print "’2334’ contains only digits : %s" % ’2334’.isdigit()
print "’a123’ contains only digits : %s" % ’a123’.isdigit()
print "Space ’ \n \t ’ : %s" % ’ \n \t ’.isspace()
print "’’ is a space : %s" % ’’.isspace()

’2334’ contains only digits : True
’a123’ contains only digits : False
Space ’

’ : True
’’ is a space : False

In [17]:

Removing initial and trailing characters
print "+" + ’ This is a stupid sentence. \n’.strip() + "+"

+This is a stupid sentence.+

In [18]:

delimiter.join(list of strings)

list_of_sentences = ["Sky is blue", "Classes are boring", "Examples are stupid"]
print ’. ’.join(list_of_sentences) + ’.’
print "-"*50
print ".\n".join(list_of_sentences) + ’.’

Sky is blue. Classes are boring. Examples are stupid.
--
Sky is blue.
Classes are boring.
Examples are stupid.

3 Dictionary

In [19]:

names = [’Eric’, ’Ila’, ’Emma’, ’John’, ’Umesh’, ’Asha’, ’Akash’, ’Kate’, ’Uma’, ’Sam’]
scores = [7,8,6,9,10,6,8,7,7,9]

score_dict={’Eric’ : 7, ’Ila’ : 8}
print "Ila scored %d." % score_dict[’Ila’]

One can add.
score_dict={}
print score_dict

for i in range(len(names)) :
score_dict[names[i]] = scores[i]

print score_dict

Ila scored 8.
{}
{’Emma’: 6, ’Akash’: 8, ’Sam’: 9, ’Ila’: 8, ’Asha’: 6, ’Kate’: 7,
’Umesh’: 10, ’Uma’: 7, ’John’: 9, ’Eric’: 7}

In [20]:

for name in score_dict :
print "%s scored %d" % (name, score_dict[name])

Emma scored 6
Akash scored 8
Sam scored 9
Ila scored 8
Asha scored 6
Kate scored 7
Umesh scored 10
Uma scored 7
John scored 9
Eric scored 7

In [21]:

def print_score(n) :
if n in score_dict :

print "%s scored %d." %(n, score_dict[n])
else :

print "%s is not on list." % n

In [22]:

print_score(’Peter’)
print_score(’Asha’)

Peter is not on list.
Asha scored 6.

In [23]:

def tabulate_scores(sd) :
print "Name : Score"
for name in sorted(sd) :

print "%5s :%9d" % (name, sd[name])
return None

In [24]:

tabulate_scores(score_dict)

Name : Score
Akash : 8
Asha : 6
Emma : 6
Eric : 7
Ila : 8

John : 9
Kate : 7
Sam : 9
Uma : 7

Umesh : 10

	I Data I/O, Strings, Dictionary
	Data I/O
	Reading data from the screen
	Command line input
	Raising errors

	Strings
	Dictionary

