
03_22_classes_numerical_differentiation

Unknown Author

April 1, 2014

1 Numerical differentiation : Classes

In [1]:

Imports
import math
import cmath

Classes

Classes are a tool to make the programs modular and hence reusable. Also they lend us a bit of abstraction which
makes coding a bit easier. To give a simple example, one can define a class Quadratic which codes quadratic
polynomials. Calling something like q = Quadratic(a, b, c) would define a function q such that q(x) =
axˆx + bx + c. Classes can be used for more complicated things like coding and drawing geometric objects and
so on.

Classes have their own set of variables, which we call attributes and functions called methods. We have already
encountered methods in our course, figure out which.

All the material in this lecture are in the 7th chapter of Langtangen’s A Primer on Scientific Programming with
Python.

First let us code the Quadratic class to gain some experience. Note that, though it is not technically necessary, all
the classes are conventionally named using a capitalized word.

In [2]:

class Quadratic :
"""This class creates quadratic equations.
Attributes :

a, b, c : Coefficients of ax^2 + bx + c
Methods :

valueat(x) : Value of the quadrating at x.
roots() : Returns a tuple containing the two roots

of ax^2 + bx + c = 0
display() : Print the quadratic equation.

"""
The doc string is similar to that of functions.
In a class, we need a function to initialize the class.
def __init__(self, a, b, c) :

"""Constructor function for the class Quadratic."""
I’ll explain the variable self below.
self.a = a
self.b = b
self.c = c

def valueat(self, x) :
"""This computes the value of the quadratic at x."""

In the following line note how we refer to the elements
a, b,c of the quadratic as self.a, self.b etc. self
is the instance of the current class.
return (self.a)*x*x + (self.b)*x + (self.c)

def roots(self) :
"""Returns the roots of the quadratic."""
a = self.a
b = self.b
c = self.c
if a != 0 :

disc = b*b - 4*a*c
if disc >= 0 :

r1 = float(-b + math.sqrt(disc))/2*a
r2 = float(-b - math.sqrt(disc))/2*a

else :
r1 = (-b + cmath.sqrt(disc))/2*a
r2 = (-b - cmath.sqrt(disc))/2*a

retval = (r1, r2)
else :

if b != 0 :
retval = - float(c)/b

else :
print "No solutions."
retval = None

return retval

def display(self) :
"""Returns a string printing the quadratic."""
str = "%g x^2 + %g x + %g" % (self.a, self.b, self.c)
return str

Now we use the class to do some computations. For fun we define another function to do the computation.

In [3]:

def solve_quads(a, b, c) :
q = Quadratic(a, b, c)
We call q an instance of the class Quadratic.
print "q = ", q.display(), "has", q.roots(), "as roots. q(",
print math.pi,") = ", q.valueat(math.pi)
return None

solve_quads(1, 2, 1)
solve_quads(1, 0, 1)
solve_quads(1, 1, 0)

q = 1 xˆ2 + 2 x + 1 has (-1.0, -1.0) as roots. q(3.14159265359) =
17.1527897083
q = 1 xˆ2 + 0 x + 1 has (1j, -1j) as roots. q(3.14159265359) =
10.8696044011
q = 1 xˆ2 + 1 x + 0 has (0.0, -1.0) as roots. q(3.14159265359) =
13.0111970547

Making classes callable.

We eventually want to diffentiate and integrate functions. We’ll implement the as classes. What we want to do is to
make the instances behave like functions. We do that using the __call__ method. As an example, we just copy the
Quadratic class to Quadratic2 renaming the valueat method to be __call__.

In [4]:

class Quadratic2 :
"""This class creates quadratic equations.
Attributes :

a, b, c : Coefficients of ax^2 + bx + c
Methods :

__call__(x) : Value of the quadrating at x.

roots() : Returns a tuple containing the two roots
of ax^2 + bx + c = 0

display() : Print the quadratic equation.
"""
The doc string is similar to that of functions.
In a class, we need a function to initialize the class.
def __init__(self, a, b, c) :

"""Constructor function for the class Quadratic."""
I’ll explain the variable self below.
self.a = a
self.b = b
self.c = c

def __call__(self, x) :
"""This computes the value of the quadratic at x."""
In the following line note how we refer to the elements
a, b,c of the quadratic as self.a, self.b etc. self
is the instance of the current class.
return (self.a)*x*x + (self.b)*x + (self.c)

def roots(self) :
"""Returns the roots of the quadratic."""
a = self.a
b = self.b
c = self.c
if a != 0 :

disc = b*b - 4*a*c
if disc >= 0 :

r1 = float(-b + math.sqrt(disc))/2*a
r2 = float(-b - math.sqrt(disc))/2*a

else :
r1 = (-b + cmath.sqrt(disc))/2*a
r2 = (-b - cmath.sqrt(disc))/2*a

retval = (r1, r2)
else :

if b != 0 :
retval = - float(c)/b

else :
print "No solutions."
retval = None

return retval

def display(self) :
"""Returns a string printing the quadratic."""
str = "%g x^2 + %g x + %g" % (self.a, self.b, self.c)
return str

In [5]:

q = Quadratic2(1, -3 , 2)
print q(10)

72

Numeric Differentiation

We know that the mathematical definition of the derivative f ′ of a function f at x is

lim
h→0

f(x+ h)− f(x)

h
(1)

Instead of finding limit, we can code the derivative as just the fraction (f(x + h) − f(x))/h for small h. Assuming
that as we reduce h, the value of the function will be closer and closer to f ′, we can also write a check if reducing h,
say by half, doesn’t change the value of the fraction beyond some acceptible error. Then we can use that value as an
approximate value for the derivative.

In [6]:

class SimpleDerivative :
"""Implements a callable class for a naive numerical
derivative."""

def __init__(self, f, h = 1.0E-3) :
self.f = f
self.h = float(h)

def __call__(self, x) :
"""Return the value of the derivative at x."""
f = self.f
h = self.h
der = (f(x + h) - f(x)) / h
return der

def set_deviation(self, val) :
"""Set the deviation."""
self.h = val

In [7]:

def f(x) :
return x*x

df = SimpleDerivative(f,.01)
print df(2)
df.set_deviation(df.h/100)
print df(2)

4.01
4.00010000001

Now to end, we modify the class so that when we call, it automatically keeps on halving the deviation till two con-
secutive derivatives differ by a very small amount. Again as in Newton’s method we have to keep track of how many
iterations we are doing.

In [8]:

class NaiveDerivative :
"""This uses a loop to compute derivatives with smaller
smaller deviations till the difference between successive
computations is less than a predetermined error

Attributes :
f : function whose derivative we seek,
h : deviaion
err : error
N : max number of interations allowed

Methods :
single_der(x) : returns (f(x+h) - f(x)) / h
set_dev(d) : sets the deviation to d
set_err(e) : sets the error allowed to e
allow_iter(M) : allow M iterations
__init__ : Constructor
__call__ : the actual code

"""

def __init__(self, f, h=0.01, err=1E-5, N=10000) :
self.f = f
self.h = float(h)
self.err = err
self.N = N

def set_dev(self, d) :
self.h = d
return None

def set_err(self, e) :
self.err = e
return None

def allow_iter(self, M) :
self.N = M
return None

def single_der(self, x) :
f = self.f
h = self.h
return (f(x + h) - f(x))/h

def __call__(self, x) :
N = self.N
err = self.err

dfold = self.single_der(x)
self.set_dev(self.h / 2.0)
dfnew = self.single_der(x)

no_iter = 0
while no_iter < N and abs(dfold - dfnew) >= err :

dfold = dfnew
self.set_dev(self.h / 2.0)
dfnew = self.single_der(x)
no_iter += 1

if abs(dfold - dfnew) >= err :
print "Could not converge after %d iterations." % no_iter
retval = None

else :
retval = dfnew

return retval

In [9]:

def myfn(x) :
return x*x*x + x

dmyfn = NaiveDerivative(myfn)
dmyfn.set_dev(1)
dmyfn.set_err(.1)
print dmyfn(1)
dmyfn.set_err(1E-5)
print dmyfn(1)

4.0947265625
4.00000572205

	Numerical differentiation : Classes
	Classes
	Making classes callable.
	Numeric Differentiation

