SOME LINEAR ALGEBRA

VIVEK MOHAN MALLICK

In this talk all the numbers are real.

1. LINEAR EQUATIONS AND MATRICES

Suppose we want to solve the system of linear equations :

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
$$\vdots$$

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.$

We can write this equation in a matrix form :

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

In short, we shall write this equation as $\mathbf{A}\vec{x} = \vec{b}$.

Here we can think of **A** to be a function which takes vectors in \mathbb{R}^n to vectors in \mathbb{R}^m ; i.e., it is the function which takes a vector $\vec{\alpha}$ in \mathbb{R}^n to $\mathbf{A}\vec{\alpha} \in \mathbb{R}^m$. In this language, the above problem reduces to asking, "What are the vectors in \mathbb{R}^n , which go to \vec{b} under the function \mathbf{A} ?"

Now **A** has the following properties :

$$\mathbf{A}(\vec{x} + \vec{y}) = \mathbf{A}\vec{x} + \mathbf{A}\vec{y}, \text{ for } x, y \in \mathbb{R}^n;$$
$$\mathbf{A}(\alpha \vec{x}) = \alpha \mathbf{A}\vec{x} \text{ for } \vec{x} \in \mathbb{R}^n, \ \alpha \in \mathbb{R}.$$

Definition 1. Such a function is called a *linear transformation*.

We saw that matrices give rise to linear transformations. The opposite is also true.

Remark 2. Suppose $B: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Let

$$B\underbrace{\begin{pmatrix}1\\0\\\vdots\\0\\\vdots\\e_1\end{pmatrix}}_{e_1} = \begin{pmatrix}b_{11}\\b_{12}\\\vdots\\b_{1m}\end{pmatrix}, \quad B\underbrace{\begin{pmatrix}0\\1\\0\\\vdots\\0\\\vdots\\0\\e_2\end{pmatrix}}_{e_2} = \begin{pmatrix}b_{21}\\b_{22}\\\vdots\\b_{2m}\end{pmatrix}, \quad \cdots, \quad B\underbrace{\begin{pmatrix}0\\\vdots\\0\\1\\\vdots\\e_n\end{pmatrix}}_{e_n} = \begin{pmatrix}b_{n1}\\b_{n2}\\\vdots\\b_{nm}\end{pmatrix}$$

Let e_1, e_2, \ldots, e_n be the vectors in \mathbb{R}^n as marked in the above equation.

Date: February 10, 2014.

Now for any vector $\vec{x} \in \mathbb{R}^n$, we have

$$B(\vec{x}) = B\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = B(x_1e_1 + \dots + x_ne_n) = x_1B(e_1) + \dots + x_nB(e_n)$$

by linearity,

$$= x_1 \begin{pmatrix} b_{11} \\ b_{12} \\ \vdots \\ b_{1m} \end{pmatrix} + \dots + x_n \begin{pmatrix} b_{n1} \\ b_{n2} \\ \vdots \\ b_{nm} \end{pmatrix} = \mathbf{B} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

where

$$\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix}$$

Therefore B corresponds to the matrix **B**.

2. Examples

- 2.1. Affine transformations. Consider some standard motions we know.
 - **Rotation.:** All rotations considered are counter-clockwise on \mathbb{R}^2 around origin. So the origin is fixed under any of the rotations. Thus a rotation R_{θ} of angle θ will take the point (1,0) to $(\cos \theta, \sin \theta)$; and will take (0,1) to $(\cos(90^\circ + \theta), \sin(90^\circ + \theta)) = (-\sin \theta, \cos \theta)$.

Thus the matrix for this transformation is

$$\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- **Translation:** Let $T_{a,b}$ be the translation which takes (x, y) to (x + a, y + b). Translation cannot be a linear transformation if we think of it as a function from \mathbb{R}^2 to \mathbb{R}^2 . The reason is a linear transformation always fixes $(0,0)^1$. However if we think of \mathbb{R}^2 sitting in \mathbb{R}^3 by identifying (x, y) with $(x, y, 1) \in \mathbb{R}^3$, we can code translation by (a, b) to be a linear transformation. Note we want (x, y, 1) to go to (x + a, y + b, 1).
 - Therefore, (0, 0, 1) goes to (a, b, 1).
 - (1, 0, 1) goes to (1+a, b, 1); and hence by linearity, (1, 0, 0) = (1, 0, 1) (0, 0, 1) goes to (1 + a, b, 1) (a, b, 1) = (1, 0, 0)
 - Following the same argument, $T_{a,b}(0,1,0) = T_{a,b}((0,1,1) (0,0,1)) = (a,b+1,1) (a,b,1) = (0,1,0).$

Therefore, the matrix for translation is

$$\mathbf{T}_{\mathbf{a},\mathbf{b}} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}.$$

 $\mathbf{2}$

 $^{{}^{1}}T(\vec{0}) = T(0 \cdot \vec{0}) = 0 \cdot T(\vec{0}) = \vec{0}$

Reflection: Reflection along x-axis is given by $(x, y) \mapsto (x, -y)$. Check that the matrix is given by

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

xercise 1. Prove that the reflection along the line x = y is given by the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

2.2. Adjacency matrix. Suppose A, B and C are three cities. Suppose the number of flights plying between the cities are given by the following table.

		To destination		
		Α	В	С
From source	А	0	2	5
	В	3	0	0
	С	3	1	0

This means that there are no flights from B to C, however there are 5 flights from A to C; and so on.

However if you are willing to stop over at exactly one place, then the there are options to go from B to C (left figure):

The right figure gives the options to go from A to B with exactly one stop over. Therefore the total number of options to go from B to C with exactly one stop over is the inner product of the row B and column C. Similarly the total number of options to go from A to B is the product of row A and column B. Thus the number of options for all possible pairs is given by the square of the matrix :

$$\begin{pmatrix} 0 & 2 & 5 \\ 3 & 0 & 0 \\ 3 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & 5 \\ 3 & 0 & 0 \\ 3 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 21 & 5 & 0 \\ 0 & 6 & 15 \\ 3 & 6 & 15 \end{pmatrix}$$

Note that the number of options to go from B to A with exactly one stop over is 0, though you have 3 ways to go from B to A directly. This is because the stop over cannot be at A since you cannot go from A to A. Similarly you cannot go from B to B. And you cannot go to C from B.

3. Row operations and échelon forms

Elementary row operations are following :

- (1) interchanging two rows
- (2) multiplying a row by a non-zero scalar
- (3) replacing a row by the sum of that row and a scalar multiple of another row.

VIVEK MOHAN MALLICK

Note that in the equation $\mathbf{A}\vec{x} = \vec{b}$, suppose we perform row operations on the augmented matrix (A : b) and get another matrix (U : v) where U is an $m \times n$ matrix and and v is an m-dimensional vector. Then, the solutions to $\mathbf{A}\vec{x} = \vec{b}$ are the same as those of $\mathbf{U}\vec{x} = \vec{v}$.

3.1. Sweeping out a column with respect to a pivot. Suppose A is a matrix and $a_{kl} \neq 0$. Sweeping out the *l*-th column with a_{kl} as a pivot is the following procedure :

- (1) Multiply the k-th row by $1/a_{kl}$. (Elementary operation 1)
- (2) For each row $r, r \neq k$, do the following :
 - (a) Multiply the k-th row by a_{rl} and subtract from the r-th row. (Elementary operation 3)

After this procedure the *l*-th column will be the vector $(0, \ldots, 0, 1, 0, \ldots, 0)$ with the 1 being at the *k*-th place.

Example 3. Suppose

$$\mathbf{A} = \begin{pmatrix} 0 & 2 & 3 & 2 \\ 1 & 4 & 5 & 5 \\ 3 & 0 & 2 & 6 \end{pmatrix}$$

and suppose we take a_{23} to be the pivot. The sweeping procedure will then be

Multiply row 2 by $1/a_{23}$:

$$\begin{pmatrix} 0 & 2 & 3 & 2 \\ 1/5 & 4/5 & 1 & 1 \\ 3 & 0 & 2 & 6 \end{pmatrix}$$

Sweep row 1: Multiply row 2 by $a_{13} = 3$ and subtract from row 1 (thus replacing row 1) to get

$$\begin{pmatrix} -3/5 & -2/5 & 0 & -1 \\ 1/5 & 4/5 & 1 & 1 \\ 3 & 0 & 2 & 6 \end{pmatrix}$$

Sweep row 3: Multiply row 2 by $a_{33} = 2$ and subtract form row 3 (thus replacing row 3) to get

$$\begin{pmatrix} -3/5 & -2/5 & 0 & -1\\ 1/5 & 4/5 & 1 & 1\\ 13/5 & -8/5 & 0 & 4 \end{pmatrix}$$

Note that after the operation the third column is (0, 1, 0) as was expected.

Definition 4. An $m \times n$ matrix with r nonzero rows $(0 \le r \le m)$ **A** is said to be in *échelon form* if

- (1) the first r rows are nonzero (this will force the last m r rows to be zero);
- (2) if p_i is the first column, where the *i*-th row has its first nonzero entry, $p_1 < p_2 < \cdots < p_r$;
- (3) $a_{ip_i} = 1.$

A matrix **A** is said to be in *reduced échelon form* if it is in échelon form and $a_{kp_i} = 0$ for all $k \neq i$ (in other words, the p_i -th column has all zeros except at the *i*-th place).