SOME LINEAR ALGEBRA

VIVEK MOHAN MALLICK

In this talk all the numbers are real.

1. Linear equations and matrices

Suppose we want to solve the system of linear equations:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

We can write this equation in a matrix form :

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) .
$$

In short, we shall write this equation as $\mathbf{A} \vec{x}=\vec{b}$.
Here we can think of \mathbf{A} to be a function which takes vectors in \mathbb{R}^{n} to vectors in \mathbb{R}^{m}; i.e., it is the function which takes a vector $\vec{\alpha}$ in \mathbb{R}^{n} to $\mathbf{A} \vec{\alpha} \in \mathbb{R}^{m}$. In this language, the above problem reduces to asking, "What are the vectors in \mathbb{R}^{n}, which go to \vec{b} under the function \mathbf{A} ?"

Now \mathbf{A} has the following properties:

$$
\begin{aligned}
\mathbf{A}(\vec{x}+\vec{y}) & =\mathbf{A} \vec{x}+\mathbf{A} \vec{y}, \text { for } x, y \in \mathbb{R}^{n} ; \\
\mathbf{A}(\alpha \vec{x}) & =\alpha \mathbf{A} \vec{x} \text { for } \vec{x} \in \mathbb{R}^{n}, \alpha \in \mathbb{R} .
\end{aligned}
$$

Definition 1. Such a function is called a linear transformation.
We saw that matrices give rise to linear transformations. The opposite is also true.
Remark 2. Suppose $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation. Let

$$
B \underbrace{\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)}_{e_{1}}=\left(\begin{array}{c}
b_{11} \\
b_{12} \\
\vdots \\
b_{1 m}
\end{array}\right), \quad B \underbrace{\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)}_{e_{2}}=\left(\begin{array}{c}
b_{21} \\
b_{22} \\
\vdots \\
b_{2 m}
\end{array}\right), \quad \cdots, \quad B \underbrace{\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)}_{e_{n}}=\left(\begin{array}{c}
b_{n 1} \\
b_{n 2} \\
\vdots \\
b_{n m}
\end{array}\right)
$$

Let $e_{1}, e_{2}, \ldots, e_{n}$ be the vectors in \mathbb{R}^{n} as marked in the above equation.

[^0]Now for any vector $\vec{x} \in \mathbb{R}^{n}$, we have

$$
B(\vec{x})=B\left(\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)\right)=B\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=x_{1} B\left(e_{1}\right)+\cdots+x_{n} B\left(e_{n}\right)
$$

by linearity,

$$
=x_{1}\left(\begin{array}{c}
b_{11} \\
b_{12} \\
\vdots \\
b_{1 m}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
b_{n 1} \\
b_{n 2} \\
\vdots \\
b_{n m}
\end{array}\right)=\mathbf{B}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

where

$$
\mathbf{B}=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right) .
$$

Therefore B corresponds to the matrix \mathbf{B}.

2. Examples

2.1. Affine transformations. Consider some standard motions we know.

Rotation.: All rotations considered are counter-clockwise on \mathbb{R}^{2} around origin. So the origin is fixed under any of the rotations. Thus a rotation R_{θ} of angle θ will take the point $(1,0)$ to $(\cos \theta, \sin \theta)$; and will take $(0,1)$ to $\left(\cos \left(90^{\circ}+\theta\right), \sin \left(90^{\circ}+\theta\right)\right)=(-\sin \theta, \cos \theta)$.

Thus the matrix for this tranformation is

$$
\mathbf{R}_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Translation: Let $T_{a, b}$ be the translation which takes (x, y) to $(x+a, y+b)$. Translation cannot be a linear transformation if we think of it as a function from \mathbb{R}^{2} to \mathbb{R}^{2}. The reason is a linear transformation always fixes $(0,0)^{1}$. However if we think of \mathbb{R}^{2} sitting in \mathbb{R}^{3} by identifying (x, y) with $(x, y, 1) \in$ \mathbb{R}^{3}, we can code translation by (a, b) to be a linear transformation. Note we want $(x, y, 1)$ to go to $(x+a, y+b, 1)$.

- Therefore, $(0,0,1)$ goes to $(a, b, 1)$.
- $(1,0,1)$ goes to $(1+a, b, 1)$; and hence by linearity, $(1,0,0)=(1,0,1)-$ $(0,0,1)$ goes to $(1+a, b, 1)-(a, b, 1)=(1,0,0)$
- Following the same argument, $T_{a, b}(0,1,0)=T_{a, b}((0,1,1)-(0,0,1))=$ $(a, b+1,1)-(a, b, 1)=(0,1,0)$.
Therefore, the matrix for translation is

$$
\mathbf{T}_{\mathbf{a}, \mathbf{b}}=\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

[^1]Reflection: Reflection along x-axis is given by $(x, y) \mapsto(x,-y)$. Check that the matrix is given by

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

xercise 1. Prove that the reflection along the line $x=y$ is given by the matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

2.2. Adjacency matrix. Suppose A, B and C are three cities. Suppose the number of flights plying between the cities are given by the following table.

	To destination			
		A	B	C
From source	A	0	2	5
	B	3	0	0
	C	3	1	0

This means that there are no flights from B to C, however there are 5 flights from A to C; and so on.

However if you are willing to stop over at exactly one place, then the there are options to go from B to C (left figure):

The right figure gives the options to go from A to B with exactly one stop over. Therefore the total number of options to go from B to C with exactly one stop over is the inner product of the row B and column C. Similarly the total number of options to go from A to B is the product of row A and column B. Thus the number of options for all possible pairs is given by the square of the matrix :

$$
\left(\begin{array}{lll}
0 & 2 & 5 \\
3 & 0 & 0 \\
3 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 2 & 5 \\
3 & 0 & 0 \\
3 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
21 & 5 & 0 \\
0 & 6 & 15 \\
3 & 6 & 15
\end{array}\right)
$$

Note that the number of options to go from B to A with exactly one stop over is 0 , though you have 3 ways to go from B to A directly. This is because the stop over cannot be at A since you cannot go from A to A. Similarly you cannot go from B to B. And you cannot go to C from B.

3. Row operations and Échelon forms

Elementary row operations are following :
(1) interchanging two rows
(2) multiplying a row by a non-zero scalar
(3) replacing a row by the sum of that row and a scalar multiple of another row.

Note that in the equation $\mathbf{A} \vec{x}=\vec{b}$, suppose we perform row operations on the augmented matrix $(A: b)$ and get another matrix $(U: v)$ where U is an $m \times n$ matrix and and v is an m-dimensional vector. Then, the solutions to $\mathbf{A} \vec{x}=\vec{b}$ are the same as those of $\mathbf{U} \vec{x}=\vec{v}$.
3.1. Sweeping out a column with respect to a pivot. Suppose A is a matrix and $a_{k l} \neq 0$. Sweeping out the l-th column with $a_{k l}$ as a pivot is the following procedure :
(1) Multiply the k-th row by $1 / a_{k l}$. (Elementary operation 1)
(2) For each row $r, r \neq k$, do the following :
(a) Multiply the k-th row by $a_{r l}$ and subtract from the r-th row. (Elementary operation 3)
After this procedure the l-th column will be the vector $(0, \ldots, 0,1,0, \ldots, 0)$ with the 1 being at the k-th place.

Example 3. Suppose

$$
\mathbf{A}=\left(\begin{array}{llll}
0 & 2 & 3 & 2 \\
1 & 4 & 5 & 5 \\
3 & 0 & 2 & 6
\end{array}\right)
$$

and suppose we take a_{23} to be the pivot. The sweeping procedure will then be
Multiply row 2 by $1 / a_{23}$:

$$
\left(\begin{array}{cccc}
0 & 2 & 3 & 2 \\
1 / 5 & 4 / 5 & 1 & 1 \\
3 & 0 & 2 & 6
\end{array}\right)
$$

Sweep row 1: Multiply row 2 by $a_{13}=3$ and subtract from row 1 (thus replacing row 1) to get

$$
\left(\begin{array}{cccc}
-3 / 5 & -2 / 5 & 0 & -1 \\
1 / 5 & 4 / 5 & 1 & 1 \\
3 & 0 & 2 & 6
\end{array}\right)
$$

Sweep row 3: Multiply row 2 by $a_{33}=2$ and subtract form row 3 (thus replacing row 3) to get

$$
\left(\begin{array}{cccc}
-3 / 5 & -2 / 5 & 0 & -1 \\
1 / 5 & 4 / 5 & 1 & 1 \\
13 / 5 & -8 / 5 & 0 & 4
\end{array}\right)
$$

Note that after the operation the third column is $(0,1,0)$ as was expected.
Definition 4. An $m \times n$ matrix with r nonzero rows $(0 \leq r \leq m) \mathbf{A}$ is said to be in échelon form if
(1) the first r rows are nonzero (this will force the last $m-r$ rows to be zero);
(2) if p_{i} is the first column, where the i-th row has its first nonzero entry, $p_{1}<p_{2}<\cdots<p_{r}$
(3) $a_{i p_{i}}=1$.

A matrix \mathbf{A} is said to be in reduced échelon form if it is in échelon form and $a_{k p_{i}}=0$ for all $k \neq i$ (in other words, the p_{i}-th column has all zeros except at the i-th place).

[^0]: Date: February 10, 2014.

[^1]: ${ }^{1} T(\overrightarrow{0})=T(0 \cdot \overrightarrow{0})=0 \cdot T(\overrightarrow{0})=\overrightarrow{0}$

