
01_27_correlations_sort_files

Unknown Author

January 28, 2014

Part I

Correlations, sorting, file input/output

0.1 Correlations

Given a data consisting of a pair of measurements/variables correlation gives a statistical measure of relationship
between the two variables. Standard examples are height/weight, scores etc. Let us denote the data by (x_i, y_i), i runs
from 1 to N say. If they are linearly related the plot of x_i, y_i would lie on a straight line. We want points which more
or less lie on a straight line to have correlation 1 or -1 depending upon whether he slope is posiive or negaive, and if
he data is random, the correlation should be zero. (x_i, y_i) lying on a line means that (xi − µx, yi − µy) lie on a line
passing through origin. In other words, the vector (y1−µy, . . . , yN−µy) is a multiple of the vector (x1−µx, . . . , xN−
µN). Cauchy Shwartz inequality for RN will then tell us :

∑
i(xi−µx)(yi−µy)/(

√
(
∑

i(xi − µx)2)(
∑

i(yi − µy)2

will lie between -1 and 1, and it attains -1 or 1 only when the vectors are multiples of each other. This motivates the
following definition of correlation.

Correlation(Xi, Yi) =
Covariance(Xi, Yi)

s.d.(Xi)s.d.(Yi)
(1)

where

Covariance(Xi, Yi) =
1

N

N∑
i=1

(Xi − µX)(Yi − µY), (2)

µX being the mean of Xi’s and µY being the mean of the Yi’s.As before we we try to simplify the formula so that we
can compute using just one loop to compute.

∑
i

(Xi−µX)(Yi−µY) =
∑
i

XiYi−µX

∑
i

Yi−µY

∑
i

Xi+NµXµY =
∑
i

XiYi−NµXµY −NµXµY +NµXµY

(3)

=
∑
i

XiYi −
1

N

(∑
i

Xi

)(∑
i

Xi

)
. (4)

Let us try this out

In [1]:

For finding standard deviation, we need
from math import sqrt

In [2]:

def my_corr(lst_of_2_tuples) :
"""Given a list of 2-tuples, this functions computes the correlation between the first entries and the
second entries."""

As before we use a huge bunch of variables.
sumx = 0.0
sumy = 0.0
sumxy = 0.0
sumx2 = 0.0
sumy2 = 0.0

Now loop
for (x, y) in lst_of_2_tuples :

Now accumulate
sumx += x
sumy += y
sumxy += x * y
sumx2 += x * x
sumy2 += y * y

Now we got all the ingredients to compute covariance and s.d. except n :
n = len(lst_of_2_tuples)

Now compute
covariance = sumxy - sumx * sumy / n
sdx = sqrt(sumx2 - sumx**2/n)
sdy = sqrt(sumy2 - sumy**2/n)

if sdx == 0 or sdy == 0 :
print "\nError: Correlation: One of the variables is constant. Cannot compute correlation."
correlation = None

else :
correlation = covariance / (sdx * sdy)

return correlation

In [3]:

data_mid = [23, 45, 83, 90, 12, 87, 67, 69, 74, 36, 43, 69, 66, 70]
data_end = [45, 44, 95, 87, 24, 100, 45, 70, 66, 32, 50, 55, 80, 81]

zipped_data = zip(data_mid, data_end)
print "Zipped data : ", zipped_data

Zipped data : [(23, 45), (45, 44), (83, 95), (90, 87), (12, 24), (87,
100), (67, 45), (69, 70), (74, 66), (36, 32), (43, 50), (69, 55), (66,
80), (70, 81)]

In [4]:

print "Correlation is", my_corr(zipped_data)

Correlation is 0.867523870625

We can experiment

In [5]:

def test_corr(lst_of_2_tups) :
print "Correlation of", lst_of_2_tups, "is", my_corr(lst_of_2_tups)

In [6]:

test_corr([(1, 5), (3, 9), (10, 23), (-2, -1), (0, 3)])
test_corr([(1, 0), (0, 1), (1, 1), (0, 0)])
test_corr([(1, 0), (0, 1), (1, 1)])
test_corr([(x, 1) for x in range(5)])
test_corr([(x**2, x) for x in range(0, 100)])

Correlation of [(1, 5), (3, 9), (10, 23), (-2, -1), (0, 3)] is 1.0
Correlation of [(1, 0), (0, 1), (1, 1), (0, 0)] is 0.0
Correlation of [(1, 0), (0, 1), (1, 1)] is -0.5
Correlation of [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1)] is

Error: Correlation: One of the variables is constant. Cannot compute
correlation.
None
Correlation of [(0, 0), (1, 1), (4, 2), (9, 3), (16, 4), (25, 5), (36,
6), (49, 7), (64, 8), (81, 9), (100, 10), (121, 11), (144, 12), (169,
13), (196, 14), (225, 15), (256, 16), (289, 17), (324, 18), (361, 19),
(400, 20), (441, 21), (484, 22), (529, 23), (576, 24), (625, 25),
(676, 26), (729, 27), (784, 28), (841, 29), (900, 30), (961, 31),
(1024, 32), (1089, 33), (1156, 34), (1225, 35), (1296, 36), (1369,
37), (1444, 38), (1521, 39), (1600, 40), (1681, 41), (1764, 42),
(1849, 43), (1936, 44), (2025, 45), (2116, 46), (2209, 47), (2304,
48), (2401, 49), (2500, 50), (2601, 51), (2704, 52), (2809, 53),
(2916, 54), (3025, 55), (3136, 56), (3249, 57), (3364, 58), (3481,
59), (3600, 60), (3721, 61), (3844, 62), (3969, 63), (4096, 64),
(4225, 65), (4356, 66), (4489, 67), (4624, 68), (4761, 69), (4900,
70), (5041, 71), (5184, 72), (5329, 73), (5476, 74), (5625, 75),
(5776, 76), (5929, 77), (6084, 78), (6241, 79), (6400, 80), (6561,
81), (6724, 82), (6889, 83), (7056, 84), (7225, 85), (7396, 86),
(7569, 87), (7744, 88), (7921, 89), (8100, 90), (8281, 91), (8464,
92), (8649, 93), (8836, 94), (9025, 95), (9216, 96), (9409, 97),
(9604, 98), (9801, 99)] is 0.967644392713

0.2 Sorting

Given a list of numbers (or any list of sortable elements) we can sort them using the following simple algorithmStart
at the beginning of the list. Compare the adjacent entries. If they are in wrong order swap. Advance by one place.
Repeat till nothing is swapped in on full sweep.

In [7]:

def horrible_sort(somelist, showstep=False) :
swapped_during_pass = True
while (swapped_during_pass) :

swapped_during_pass = False
for i in range(len(somelist) - 1) :

if somelist[i] > somelist[i+1] :
k = somelist[i]
somelist[i] = somelist[i+1]
somelist[i+1] = k
swapped_during_pass = True

if showstep :
print somelist

return somelist

In [8]:

print horrible_sort([3,1,4,2,5,0])
print horrible_sort([1,3,1,3,1,3,1], True)

[0, 1, 2, 3, 4, 5]
[1, 3, 1, 3, 1, 3, 1]
[1, 1, 3, 3, 1, 3, 1]
[1, 1, 3, 3, 1, 3, 1]
[1, 1, 3, 1, 3, 3, 1]
[1, 1, 3, 1, 3, 3, 1]
[1, 1, 3, 1, 3, 1, 3]
[1, 1, 3, 1, 3, 1, 3]
[1, 1, 3, 1, 3, 1, 3]
[1, 1, 1, 3, 3, 1, 3]
[1, 1, 1, 3, 3, 1, 3]
[1, 1, 1, 3, 1, 3, 3]

[1, 1, 1, 3, 1, 3, 3]
[1, 1, 1, 3, 1, 3, 3]
[1, 1, 1, 3, 1, 3, 3]
[1, 1, 1, 3, 1, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]
[1, 1, 1, 1, 3, 3, 3]

0.3 Reading from files

In [9]:

data_file = open("files/01_27_data.txt", "r")
for line in data_file :

print line
data_file.close()

Temperature Ice Cream Sales

14.2 215

16.4 325

11.9 185

15.2 332

18.5 406

22.1 522

19.4 412

25.1 614

23.4 544

18.1 421

22.6 445

17.2 408

Now we can extract the data using the split() function as follows:

In [10]:

data_file = open("files/01_27_data.txt", ’r’)
for line in data_file :

print line.split()
data_file.close()

[’Temperature’, ’Ice’, ’Cream’, ’Sales’]
[’14.2’, ’215’]
[’16.4’, ’325’]
[’11.9’, ’185’]
[’15.2’, ’332’]
[’18.5’, ’406’]
[’22.1’, ’522’]
[’19.4’, ’412’]
[’25.1’, ’614’]
[’23.4’, ’544’]
[’18.1’, ’421’]
[’22.6’, ’445’]
[’17.2’, ’408’]

However the entries are strings and the first line has to be discarded. We do this as follows. i keeps track of which line
we are in. If it is not the first line, we convert the strings into float an store them.

In [11]:

data_file = open("files/01_27_data.txt", ’r’)
i = 0
ice_cream_data = []
for line in data_file :

if i > 0 :
ice_cream_data.append((float(line.split()[0]), float(line.split()[1])))

i += 1
data_file.close()
print ice_cream_data

[(14.2, 215.0), (16.4, 325.0), (11.9, 185.0), (15.2, 332.0), (18.5,
406.0), (22.1, 522.0), (19.4, 412.0), (25.1, 614.0), (23.4, 544.0),
(18.1, 421.0), (22.6, 445.0), (17.2, 408.0)]

Okay! Now that we have a list of tuples, we can find the correlation!

In [12]:

data_file = open("files/01_27_data.txt", ’r’)
i = 0
ice_cream_data = []
for line in data_file :

if i > 0 :
ice_cream_data.append((float(line.split()[0]), float(line.split()[1])))

i += 1
data_file.close()
print "Correlation for the icecream data is %6.4f" % my_corr(ice_cream_data)

Correlation for the icecream data is 0.9575

