Mid sem solutions Elementary Geometry (MTH312)

1. Consider the real Cartesian plane, whose set of points is the set of ordered pairs

$$
\mathscr{P}=\{(x, y) \mid x, y \in \mathbb{R}\},
$$

and the set of lines to be the set containing solutions of linear equations
$\mathscr{L}=\left\{L \subset \mathscr{P} \mid \exists\left(a_{L}, b_{L}, c_{L}\right) \in S\right.$, such that $\left.(x, y) \in L \Longleftrightarrow a_{L} x+b_{L} y+c_{L}=0\right\}$,
where $S \in \mathbb{R}^{3}$ is the set of all triples (a, b, c) such that $a \neq 0$ or $b \neq 0$ (or both).
1a. Check that the real Cartesian plane satisfies the axioms of incidence.
1 b . Can you give a definition of notion of betweenness in real Cartesian plane?
1c. Prove the betweenness axioms B1, B2 and B3 for this notion of betweenness.
Proof. 1a. Let $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ be two distinct points. One can write an equation for this line : $\left(a_{2}-b_{2}\right) x-\left(a_{1}-b_{1}\right) y+a_{1} b_{2}-a_{2} b_{1}=0$. This proves I1. I2 is trivially satisfied. I3 can be checked by considering $(0,0),(0,1),(1,0)$. Line containing all these should be of the form $0=0$, as is seen by substitution.
1b. $(a, b) *(c, d) *(e, f)$ if and only if they line on a line and $a * c * e$ and $b * d * e$, where $r * s * t$ for three real numbers iff one of $r \leq s \leq t$ or $r \geq s \geq t$ holds.
1c. Note that by definition, a point is between two other points, only if all of them lie on a line. Also on $\mathbb{R}, r * s * t \Longleftrightarrow t * s * r$. Thus $(a, b) *(c, d) *(e, f)$ iff $a * c * e$ and $b * d * f$ iff $e * c * a$ and $f * d * b$ iff $(e, f) *(c, d) *(a, b)$. This completes the proof of B1. For B2, given $A=(a, b)$ and $B=(c, d)$, consider $(2 c-a, 2 d-b)$. If $a \leq c, 2 c-a \geq 2 c-c=c$. Therefore, $a \leq c \leq 2 c-a$, or $a * c *(2 c-a)$. Similarly, $a \geq c$ says that $c=2 c-c \geq 2 c-a$, therefore $a \geq c \geq 2 c-a$, again proving $a * c *(2 c-a)$. Similarly, one concludes $b * d *(2 d-b)$.

On \mathbb{R}, given three distinct numbers, only one of them lies between the other two. Now given $(a, b),(c, d)$ and (e, f), all on the same line, either a, c and e are distinct or b, d and f are distinct (or both). Suppose a, c and e are distinct. Without loss of generality, assume that $a * c * e$. Suppose $a<c<e$. If the line L passing through these points have $a_{L}=0$, then $b=d=f$. If $a_{L}>0$, depending on the sign of b_{L} (which cannot be 0), either $b<d<f$ or $b>d>f$. In any case, $b * d * f$. For $a_{L}<0$ we can argue similarly. Thus (c, d) would then lie between (a, b) and (e, f). This proves B3.
2. Consider the quadratic equation $5 x^{2}+5 y^{2}+6 x+8 y=0$. What kind of conic is it?

Proof. Write the equation as

$$
\begin{aligned}
0 & =x^{2}+y^{2}+2 \cdot \frac{3}{5} x+2 \cdot \frac{4}{5} y \\
& =x^{2}+2 \cdot \frac{3}{5} x+\left(\frac{3}{5}\right)^{2}+y^{2}+2 \cdot \frac{4}{5} y+\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}-\left(\frac{4}{5}\right)^{2} \\
& =\left(x+\frac{3}{5}\right)^{2}+\left(y+\frac{4}{5}\right)^{2}-1
\end{aligned}
$$

which is a circle of radius 1 with centre $(-3 / 5,-4 / 5)$.
3. In this problem, we are on the real Cartesian plane. Suppose $R_{(0,0)}^{90^{\circ}}$ be the rotation around the origin, 90° in the counter-clockwise direction. Similarly let $R_{(1,1)}^{270^{\circ}}$ be the rotation around the point $(1,1), 90^{\circ}$ in the clockwise direction. What can you say about $R_{(1,1)}^{270^{\circ}} \circ R_{(0,0)}^{90^{\circ}}$ Can you describe it as a single rigid motion, like a translation, rotation, reflection or glide reflection?
Proof. Let l be the x-axis, m be the line passing through the origin, $(0,0)$ and $(1,1)$, and n be the line $y=1$. Note that $R_{(0,0)}^{90^{\circ}}$ is a composition of two reflections $\Re_{m} \circ \Re_{l}$, where \mathfrak{R}_{L} denotes the reflection along the line L. Similary, $R_{(1,1)}^{270^{\circ}}=\mathfrak{R}_{n} \circ \mathfrak{R}_{m}$. Therefore, $R_{(1,1)}^{270^{\circ}} \circ R_{(0,0)}^{90^{\circ}}=\Re_{n} \circ \Re_{m} \circ \Re_{m} \circ \Re_{l}=\Re_{n} \circ \Re_{m}$ is the composition of two reflections along parallel lines. The orthogonal vector sending l to m is $(0,1)$. Therefore, the compostion is translation by the vector $(0,2)$.
4. Identify the Cartesian plane with the complex plane $Z=X+\sqrt{-1} Y \in \mathbb{C} \leftrightarrow$ (X, Y).
4a. Prove that the equation of a straight line passing through B and C in \mathbb{C} is given by $\bar{A} Z+A \bar{Z}=\sqrt{-1}(B \bar{C}-\bar{B} C)$, where $A=\sqrt{-1}(B-C)$.
4b. Prove that the perpendicular to the line $A \bar{Z}+\bar{A} Z=c$, for $A \in \mathbb{C}, c \in \mathbb{R}$, at a point B lying on the line is given by

$$
\overline{(\sqrt{-1} A)} Z+(\sqrt{-1} A) \bar{Z}=\overline{(\sqrt{-1} A)} B+(\sqrt{-1} A) \bar{B} .
$$

4c. Using the above, or otherwise, prove that the equation of tangent at a point B on a circle $Z \bar{Z}-C \bar{Z}-\bar{C} Z+C \bar{C}=r^{2}$ is given by

$$
(B-C) \bar{Z}+(\bar{B}-\bar{C}) Z=B \bar{B}-C \bar{C}+r^{2} .
$$

Proof. 4a. Let us denote $\sqrt{-1}$ by i. Then, a general equation of a line is $A \bar{Z}+\bar{A} Z=$ c. Since this line passes through B and C, we have

$$
\begin{aligned}
A \bar{B}+\bar{A} B & =c \\
A \bar{C}+\bar{A} C & =c
\end{aligned}
$$

$$
\text { Therefore, } A(\bar{B}-\bar{C})+\bar{A}(B-C)=0
$$

Hence $A(\bar{B}-\bar{C})$ is purely imaginary. Suppose it is $\lambda^{\prime} i$. Therefore,

$$
\begin{aligned}
A & =\frac{i \lambda^{\prime}}{\bar{B}-\bar{C}}=\frac{i \lambda^{\prime}}{\|B-C\|}(B-C) \\
& =i \lambda(B-C),
\end{aligned}
$$

for some $\lambda \in \mathbb{R}$.
Now substituting $Z=B$,

$$
\begin{aligned}
c & =\bar{A} B+A \bar{B}=\overline{i \lambda(B-C)} B+i \lambda(B-C) \bar{B} \\
& =-i \lambda \bar{B} B+i \lambda \bar{C} B+i \lambda B \bar{B}-i \lambda C \bar{B} \\
& =i \lambda(B \bar{C}-\bar{B} C) .
\end{aligned}
$$

Thus the equation reduces to

$$
i \lambda(B-C) \bar{Z}+\overline{i \lambda(B-C)} Z=i \lambda(B \bar{C}-\bar{B} C)
$$

or equivalently, after cancelling λ

$$
\{i(B-C)\} \bar{Z}+\overline{\{i(B-C)\}} Z=i(B \bar{C}-\bar{B} C)
$$

This completes the proof.
4 b . Note that multiplication by i corresponds to rotation by 90°. Also the lines $A \bar{Z}+\bar{A} Z=c$ for different values of c are parallel to each other.

Now consider the line $L: A \bar{Z}+\bar{A} Z=0$, the line parallel to the given line passing through the origin $0 \in \mathbb{C}$. The points on the perpendicular line M satisfies the condition that a 90° rotation on the points of M give points on L, That is, if $W \in M, i W \in L$. That is,

$$
A \overline{(i W)}+\bar{A}(i W)=0
$$

is the equation for M. Rewriting the equation of M, and multiplying by -1 , we get

$$
(i A) \bar{W}+\overline{(i A)} W=0
$$

The line we seek should therefore be of the form $(i A) \bar{W}+\overline{(i A)} W=c$ and it passes through B. Thus,

$$
c=i A \bar{B}+\overline{(i A)} B
$$

as was to be proved.
4c. We need to find the line perpendicular to the line $B C$ which passes through B. The line $B C$ has the formula

$$
i(B-C) \bar{Z}+\overline{(i(B-C))} Z=i(B \bar{C}-\bar{B} C)
$$

Let $A=i(B-C)$. The line perpendicular to this, passing through B has the formula,

$$
(i A) \bar{Z}+\overline{(i A)} Z=(i A) \bar{B}+\overline{(i A)} B
$$

which we simplify as

$$
\begin{aligned}
-(B-C) \bar{Z}-(\bar{B}-\bar{C}) Z & =-(B-C) \bar{B}-(\bar{B}-\bar{C}) B \\
(B-C) \bar{Z}+(\bar{B}-\bar{C}) Z & =(B-C) \bar{B}+(\bar{B}-\bar{C}) B \\
(B-C) \bar{Z}+(\bar{B}-\bar{C}) Z & =B \bar{B}-C \bar{B}+\bar{B} B-\bar{C} B \\
& =B \bar{B}-C \bar{C}+B \bar{B}-C \bar{B}-B \bar{C}+C \bar{C} \\
& =B \bar{B}-C \bar{C}+(B-C) \overline{(B-C)} \\
& =B \bar{B}-C \bar{C}+\|B-C\|^{2} \\
& =B \bar{B}-C \bar{C}+r^{2}
\end{aligned}
$$

as was to be proved.
5. Show that under circular inversion with respect to the unit circle centered at the origin, a circle with centre C and radius r, inverts into a circle with

$$
\text { centre }=\frac{C}{C \bar{C}-r^{2}} ; \quad \text { radius }=\frac{r}{C \bar{C}-r^{2}}
$$

Proof. Suppose W be a point in the inverted circle. This means that its inversion, $1 / \bar{W}$ lies in the original circle, that is

$$
\left\|\frac{1}{\bar{W}}-C\right\|=r
$$

Squaring and expanding we get the following sequence of equations

$$
\begin{aligned}
\frac{1}{\bar{W}} \frac{1}{W}-\frac{C}{W}-\frac{\bar{C}}{\bar{W}}+C \bar{C} & =r^{2} ; \\
1-C \bar{W}-\bar{C} W+W \bar{W}\left(C \bar{C}-r^{2}\right) & =0 ; \\
W \bar{W}-\frac{C}{C \bar{C}-r^{2}} \bar{W}-\frac{\bar{C}}{C \bar{C}-r^{2}} W+\frac{1}{C \bar{C}-r^{2}} & =0 ;
\end{aligned}
$$

Setting $A=C /\left(C \bar{C}-r^{2}\right)$ the equation reduces to

$$
\begin{aligned}
W \bar{W}-A \bar{W}-\bar{A} W+\frac{1}{C \bar{C}-r^{2}} & =0 ; \\
W \bar{W}-A \bar{W}-\bar{A} W+A \bar{A}+\frac{1}{C \bar{C}-r^{2}}-A \bar{A} & =0 ; \\
(W-A) \overline{(W-A)} & =A \bar{A}-\frac{1}{C \bar{C}-r^{2}} \\
& =\frac{C \bar{C}}{\left(C \bar{C}-r^{2}\right)^{2}}-\frac{1}{C \bar{C}-r^{2}} \\
& =\frac{C \bar{C}-C \bar{C}+r^{2}}{\left(C \bar{C}-r^{2}\right)^{2}} \\
& =\left(\frac{r}{C \bar{C}-r^{2}}\right)^{2}
\end{aligned}
$$

which is nothing but a circle with

$$
\text { centre }=A=\frac{C}{C \bar{C}-r^{2}} \quad \text { and } \quad \text { radius }=\frac{r}{C \bar{C}-r^{2}} .
$$

6. Suppose we are given rays $\overrightarrow{A a} \mid \| \overrightarrow{B b}$ and $\overrightarrow{A^{\prime} a^{\prime}} \| \mid \overrightarrow{B^{\prime} b^{\prime}}$. Also assume that $A B \cong$ $A^{\prime} B^{\prime}$, and $\angle B A a \cong \angle B^{\prime} A^{\prime} a^{\prime}$. Prove then $\angle A B b \cong \angle A^{\prime} B^{\prime} b^{\prime}$.

Proof.
Suppose that $\angle A^{\prime} B^{\prime} b^{\prime}>\angle A B b$. Then let $\overrightarrow{B^{\prime} Q^{\prime}}$ be the ray such that $\angle A B b=$ $\angle A^{\prime} B^{\prime} Q^{\prime}=\beta$. Since this ray is in the interior of $\angle A^{\prime} B^{\prime} b^{\prime}$, it must meet $\overrightarrow{A^{\prime} a^{\prime}}$. Let the point of intersection be Q^{\prime}. Mark Q on $\overrightarrow{A a}$ such that $A Q \cong A^{\prime} Q^{\prime}$. Join $B Q$.

In triangles $A B Q$ and $A^{\prime} B^{\prime} Q^{\prime}, B A \cong B^{\prime} A^{\prime}$ (given), $\angle B A Q \cong \angle B^{\prime} A^{\prime} Q^{\prime}$ (given) and $A Q \cong A^{\prime} Q^{\prime}$ (by construction). Therefore by SAS (Axiom C6), $\triangle A B Q \cong$ $\triangle A^{\prime} B^{\prime} Q^{\prime}$. Thus $\angle A B Q \cong \angle A^{\prime} B^{\prime} Q^{\prime}$. Now by construction $\angle A^{\prime} B^{\prime} Q^{\prime} \cong \angle A B b$. Therefore, $\angle A B Q \cong \angle A B b$ which is only possible if $Q \in \overrightarrow{B b}$. But that would imply that $\overrightarrow{A a}$ intersects $\overrightarrow{B b}$ which contradicts the fact that they are limiting parallels. Therefore $\angle A^{\prime} B^{\prime} b^{\prime} \leq \angle A B b$. Now reversing the roles of the primed and the unprimed vertices, the same argument will say that $\angle A B b \leq \angle A^{\prime} B^{\prime} b^{\prime}$, and hence they are equal.

