Mid sem solutions Elementary Geometry (MTH312)

1. Consider the real Cartesian plane, whose set of points is the set of ordered pairs

$$\mathscr{P} = \{(x, y) \mid x, y \in \mathbb{R} \},\,$$

and the set of lines to be the set containing solutions of linear equations

$$\mathscr{L} = \{ L \subset \mathscr{P} \mid \exists (a_L, b_L, c_L) \in S, \text{ such that } (x, y) \in L \iff a_L x + b_L y + c_L = 0 \},$$

where $S \in \mathbb{R}^3$ is the set of all triples (a, b, c) such that $a \neq 0$ or $b \neq 0$ (or both).

- 1a. Check that the real Cartesian plane satisfies the axioms of incidence.
- 1b. Can you give a definition of notion of betweenness in real Cartesian plane?
- 1c. Prove the betweenness axioms B1, B2 and B3 for this notion of betweenness.
- *Proof.* 1a. Let (a_1, b_1) and (a_2, b_2) be two distinct points. One can write an equation for this line: $(a_2 b_2)x (a_1 b_1)y + a_1b_2 a_2b_1 = 0$. This proves I1. I2 is trivially satisfied. I3 can be checked by considering (0,0), (0,1), (1,0). Line containing all these should be of the form 0 = 0, as is seen by substitution.
- 1b. (a,b)*(c,d)*(e,f) if and only if they line on a line and a*c*e and b*d*e, where r*s*t for three real numbers iff one of $r \le s \le t$ or $r \ge s \ge t$ holds.
- 1c. Note that by definition, a point is between two other points, only if all of them lie on a line. Also on \mathbb{R} , $r*s*t \iff t*s*r$. Thus (a,b)*(c,d)*(e,f) iff a*c*e and b*d*f iff e*c*a and f*d*b iff (e,f)*(c,d)*(a,b). This completes the proof of B1. For B2, given A=(a,b) and B=(c,d), consider (2c-a,2d-b). If $a \le c$, $2c-a \ge 2c-c = c$. Therefore, $a \le c \le 2c-a$, or a*c*(2c-a). Similarly, $a \ge c$ says that $c=2c-c \ge 2c-a$, therefore $a \ge c \ge 2c-a$, again proving a*c*(2c-a). Similarly, one concludes b*d*(2d-b).

On \mathbb{R} , given three distinct numbers, only one of them lies between the other two. Now given (a,b), (c,d) and (e,f), all on the same line, either a, c and e are distinct or b, d and f are distinct (or both). Suppose a, c and e are distinct. Without loss of generality, assume that a*c*e. Suppose a < c < e. If the line L passing through these points have $a_L = 0$, then b = d = f. If $a_L > 0$, depending on the sign of b_L (which cannot be 0), either b < d < f or b > d > f. In any case, b*d*f. For $a_L < 0$ we can argue similarly. Thus (c,d) would then lie between (a,b) and (e,f). This proves B3.

2. Consider the quadratic equation $5x^2 + 5y^2 + 6x + 8y = 0$. What kind of conic is it?

Proof. Write the equation as

$$0 = x^{2} + y^{2} + 2 \cdot \frac{3}{5}x + 2 \cdot \frac{4}{5}y$$

$$= x^{2} + 2 \cdot \frac{3}{5}x + \left(\frac{3}{5}\right)^{2} + y^{2} + 2 \cdot \frac{4}{5}y + \left(\frac{4}{5}\right)^{2} - \left(\frac{3}{5}\right)^{2} - \left(\frac{4}{5}\right)^{2}$$

$$= \left(x + \frac{3}{5}\right)^{2} + \left(y + \frac{4}{5}\right)^{2} - 1$$

which is a circle of radius 1 with centre (-3/5, -4/5).

3. In this problem, we are on the real Cartesian plane. Suppose $R_{(0,0)}^{90^{\circ}}$ be the rotation around the origin, 90° in the counter-clockwise direction. Similarly let $R_{(1,1)}^{270^{\circ}}$ be the rotation around the point (1, 1), 90° in the clockwise direction. What can you say about $R_{(1,1)}^{270^{\circ}} \circ R_{(0,0)}^{90^{\circ}}$ Can you describe it as a single rigid motion, like a translation, rotation, reflection or glide reflection?

Proof. Let l be the x-axis, m be the line passing through the origin, (0,0) and (1,1), and n be the line y=1. Note that $R_{(0,0)}^{90^{\circ}}$ is a composition of two reflections $\mathfrak{R}_m \circ \mathfrak{R}_l$, where \mathfrak{R}_L denotes the reflection along the line L. Similarly, $R_{(1,1)}^{270^{\circ}} = \mathfrak{R}_n \circ \mathfrak{R}_m$. Therefore, $R_{(1,1)}^{270^{\circ}} \circ R_{(0,0)}^{90^{\circ}} = \mathfrak{R}_n \circ \mathfrak{R}_m \circ \mathfrak{R}_m \circ \mathfrak{R}_l = \mathfrak{R}_n \circ \mathfrak{R}_m$ is the composition of two reflections along parallel lines. The orthogonal vector sending l to m is (0,1). Therefore, the compostion is translation by the vector (0,2).

- 4. Identify the Cartesian plane with the complex plane $Z = X + \sqrt{-1}Y \in \mathbb{C} \leftrightarrow (X,Y)$.
- 4a. Prove that the equation of a straight line passing through B and C in \mathbb{C} is given by $\bar{A}Z + A\bar{Z} = \sqrt{-1}(B\bar{C} \bar{B}C)$, where $A = \sqrt{-1}(B C)$.
- 4b. Prove that the perpendicular to the line $A\bar{Z} + \bar{A}Z = c$, for $A \in \mathbb{C}$, $c \in \mathbb{R}$, at a point B lying on the line is given by

$$\overline{(\sqrt{-1}A)}Z + (\sqrt{-1}A)\bar{Z} = \overline{(\sqrt{-1}A)}B + (\sqrt{-1}A)\bar{B}.$$

4c. Using the above, or otherwise, prove that the equation of tangent at a point B on a circle $Z\bar{Z} - C\bar{Z} - \bar{C}Z + C\bar{C} = r^2$ is given by

$$(B-C)\bar{Z} + (\bar{B}-\bar{C})Z = B\bar{B} - C\bar{C} + r^2.$$

Proof. 4a. Let us denote $\sqrt{-1}$ by *i*. Then, a general equation of a line is $A\bar{Z} + \bar{A}Z = c$. Since this line passes through B and C, we have

$$A\bar{B} + \bar{A}B = c$$

$$A\bar{C} + \bar{A}C = c$$

$$+ \bar{A}(B - C) = 0$$

Therefore,
$$A(\bar{B} - \bar{C}) + \bar{A}(B - C) = 0$$

Hence $A(\bar{B} - \bar{C})$ is purely imaginary. Suppose it is $\lambda' i$. Therefore,

$$A = \frac{i\lambda'}{\bar{B} - \bar{C}} = \frac{i\lambda'}{\|B - C\|} (B - C)$$
$$= i\lambda(B - C),$$

for some $\lambda \in \mathbb{R}$.

Now substituting Z = B,

$$\begin{split} c &= \bar{A}B + A\bar{B} = \overline{i\lambda(B-C)}B + i\lambda(B-C)\bar{B} \\ &= -i\lambda\bar{B}B + i\lambda\bar{C}B + i\lambda B\bar{B} - i\lambda C\bar{B} \\ &= i\lambda(B\bar{C} - \bar{B}C). \end{split}$$

Thus the equation reduces to

$$i\lambda(B-C)\bar{Z} + i\lambda(B-C)Z = i\lambda(B\bar{C} - \bar{B}C)$$

or equivalently, after cancelling λ

$$\{i(B-C)\}\bar{Z} + \overline{\{i(B-C)\}}Z = i(B\bar{C} - \bar{B}C).$$

This completes the proof.

4b. Note that multiplication by i corresponds to rotation by 90°. Also the lines $A\bar{Z} + \bar{A}Z = c$ for different values of c are parallel to each other.

Now consider the line $L: A\bar{Z} + \bar{A}Z = 0$, the line parallel to the given line passing through the origin $0 \in \mathbb{C}$. The points on the perpendicular line M satisfies the condition that a 90° rotation on the points of M give points on L, That is, if $W \in M$, $iW \in L$. That is,

$$A\overline{(iW)} + \bar{A}(iW) = 0$$

is the equation for M. Rewriting the equation of M, and multiplying by -1, we get

$$(iA)\bar{W} + \overline{(iA)}W = 0.$$

The line we seek should therefore be of the form $(iA)\overline{W} + \overline{(iA)}W = c$ and it passes through B. Thus,

$$c = iA\bar{B} + \overline{(iA)}B$$

as was to be proved.

4c. We need to find the line perpendicular to the line BC which passes through B. The line BC has the formula

$$i(B-C)\bar{Z} + \overline{(i(B-C))}Z = i(B\bar{C} - \bar{B}C).$$

Let A = i(B - C). The line perpendicular to this, passing through B has the formula,

$$(iA)\bar{Z} + \overline{(iA)}Z = (iA)\bar{B} + \overline{(iA)}B$$

which we simplify as

$$\begin{split} -(B-C)\bar{Z} - (\bar{B} - \bar{C})Z &= -(B-C)\bar{B} - (\bar{B} - \bar{C})B, \\ (B-C)\bar{Z} + (\bar{B} - \bar{C})Z &= (B-C)\bar{B} + (\bar{B} - \bar{C})B, \\ (B-C)\bar{Z} + (\bar{B} - \bar{C})Z &= B\bar{B} - C\bar{B} + \bar{B}B - \bar{C}B \\ &= B\bar{B} - C\bar{C} + B\bar{B} - C\bar{B} - B\bar{C} + C\bar{C} \\ &= B\bar{B} - C\bar{C} + (B-C)\overline{(B-C)} \\ &= B\bar{B} - C\bar{C} + \|B - C\|^2 \\ &= B\bar{B} - C\bar{C} + r^2 \end{split}$$

as was to be proved.

5. Show that under circular inversion with respect to the unit circle centered at the origin, a circle with centre C and radius r, inverts into a circle with

centre =
$$\frac{C}{C\bar{C} - r^2}$$
; radius = $\frac{r}{C\bar{C} - r^2}$.

Proof. Suppose W be a point in the inverted circle. This means that its inversion, $1/\overline{W}$ lies in the original circle, that is

$$\left\| \frac{1}{\bar{W}} - C \right\| = r.$$

Squaring and expanding we get the following sequence of equations

$$\begin{split} \frac{1}{\bar{W}}\frac{1}{W} - \frac{C}{W} - \frac{\bar{C}}{\bar{W}} + C\bar{C} &= r^2; \\ 1 - C\bar{W} - \bar{C}W + W\bar{W}(C\bar{C} - r^2) &= 0; \\ W\bar{W} - \frac{C}{C\bar{C} - r^2}\bar{W} - \frac{\bar{C}}{C\bar{C} - r^2}W + \frac{1}{C\bar{C} - r^2} &= 0; \end{split}$$

Setting $A = C/(C\bar{C} - r^2)$ the equation reduces to

$$W\bar{W} - A\bar{W} - \bar{A}W + \frac{1}{C\bar{C} - r^2} = 0;$$

$$W\bar{W} - A\bar{W} - \bar{A}W + A\bar{A} + \frac{1}{C\bar{C} - r^2} - A\bar{A} = 0;$$

$$(W - A)\overline{(W - A)} = A\bar{A} - \frac{1}{C\bar{C} - r^2}$$

$$= \frac{C\bar{C}}{(C\bar{C} - r^2)^2} - \frac{1}{C\bar{C} - r^2}$$

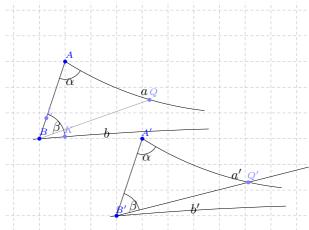
$$= \frac{C\bar{C} - C\bar{C} + r^2}{(C\bar{C} - r^2)^2}$$

$$= \left(\frac{r}{C\bar{C} - r^2}\right)^2.$$

which is nothing but a circle with

$${\rm centre} = A = \frac{C}{C\bar{C} - r^2} \quad {\rm and} \quad {\rm radius} = \frac{r}{C\bar{C} - r^2}.$$

6. Suppose we are given rays $\overrightarrow{Aa}|||\overrightarrow{Bb}$ and $\overrightarrow{A'a'}|||\overrightarrow{B'b'}$. Also assume that $AB \cong A'B'$, and $\angle BAa \cong \angle B'A'a'$. Prove then $\angle ABb \cong \angle A'B'b'$.



Proof.

Suppose that $\angle A'B'b' > \angle ABb$. Then let $\overrightarrow{B'Q'}$ be the ray such that $\angle ABb = \angle A'B'Q' = \beta$. Since this ray is in the interior of $\angle A'B'b'$, it must meet $\overrightarrow{A'a'}$. Let the point of intersection be Q'. Mark Q on \overrightarrow{Aa} such that $AQ \cong A'Q'$. Join BQ.

In triangles ABQ and A'B'Q', $BA \cong B'A'$ (given), $\angle BAQ \cong \angle B'A'Q'$ (given) and $AQ \cong A'Q'$ (by construction). Therefore by SAS (Axiom C6), $\triangle ABQ \cong \triangle A'B'Q'$. Thus $\angle ABQ \cong \angle A'B'Q'$. Now by construction $\angle A'B'Q' \cong \angle ABb$. Therefore, $\angle ABQ \cong \angle ABb$ which is only possible if $Q \in \overrightarrow{Bb}$. But that would imply that \overrightarrow{Aa} intersects \overrightarrow{Bb} which contradicts the fact that they are limiting parallels. Therefore $\angle A'B'b' \leq \angle ABb$. Now reversing the roles of the primed and the unprimed vertices, the same argument will say that $\angle ABb \leq \angle A'B'b'$, and hence they are equal.