
Mid sem solutions
Elementary Geometry (MTH312)

1. Consider the real Cartesian plane, whose set of points is the set of ordered pairs

P = {(x, y) | x, y ∈ R} ,
and the set of lines to be the set containing solutions of linear equations

L = {L ⊂ P | ∃(aL, bL, cL) ∈ S, such that (x, y) ∈ L ⇐⇒ aLx+ bLy + cL = 0} ,
where S ∈ R

3 is the set of all triples (a, b, c) such that a 6= 0 or b 6= 0 (or both).

1a. Check that the real Cartesian plane satisfies the axioms of incidence.
1b. Can you give a definition of notion of betweenness in real Cartesian plane?
1c. Prove the betweenness axioms B1, B2 and B3 for this notion of betweenness.

Proof. 1a. Let (a1, b1) and (a2, b2) be two distinct points. One can write an equa-
tion for this line : (a2 − b2)x− (a1 − b1)y+ a1b2 − a2b1 = 0. This proves I1. I2
is trivially satisfied. I3 can be checked by considering (0, 0), (0, 1), (1, 0). Line
containing all these should be of the form 0 = 0, as is seen by substitution.

1b. (a, b) ∗ (c, d) ∗ (e, f) if and only if they line on a line and a ∗ c ∗ e and b ∗ d ∗ e,
where r ∗ s ∗ t for three real numbers iff one of r ≤ s ≤ t or r ≥ s ≥ t holds.

1c. Note that by definition, a point is between two other points, only if all of them
lie on a line. Also on R, r∗s∗t ⇐⇒ t∗s∗r. Thus (a, b)∗(c, d)∗(e, f) iff a∗c∗e
and b ∗ d ∗ f iff e ∗ c ∗ a and f ∗ d ∗ b iff (e, f) ∗ (c, d) ∗ (a, b). This completes the
proof of B1. For B2, given A = (a, b) and B = (c, d), consider (2c− a, 2d− b).
If a ≤ c, 2c − a ≥ 2c − c = c. Therefore, a ≤ c ≤ 2c − a, or a ∗ c ∗ (2c − a).
Similarly, a ≥ c says that c = 2c− c ≥ 2c− a, therefore a ≥ c ≥ 2c− a, again
proving a ∗ c ∗ (2c− a). Similarly, one concludes b ∗ d ∗ (2d− b).

On R, given three distinct numbers, only one of them lies between the other
two. Now given (a, b), (c, d) and (e, f), all on the same line, either a, c and e
are distinct or b, d and f are distinct (or both). Suppose a, c and e are distinct.
Without loss of generality, assume that a ∗ c ∗ e. Suppose a < c < e. If the
line L passing through these points have aL = 0, then b = d = f . If aL > 0,
depending on the sign of bL (which cannot be 0), either b < d < f or b > d > f .
In any case, b ∗ d ∗ f . For aL < 0 we can argue similarly. Thus (c, d) would
then lie between (a, b) and (e, f). This proves B3.

�

2. Consider the quadratic equation 5x2 + 5y2 + 6x + 8y = 0. What kind of conic
is it?

Proof. Write the equation as

0 = x2 + y2 + 2 · 3
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which is a circle of radius 1 with centre (−3/5,−4/5). �
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3. In this problem, we are on the real Cartesian plane. Suppose R90◦

(0,0) be the

rotation around the origin, 90◦ in the counter-clockwise direction. Similarly let
R270◦

(1,1) be the rotation around the point (1, 1), 90◦ in the clockwise direction. What

can you say about R270◦

(1,1) ◦ R90◦

(0,0) Can you describe it as a single rigid motion, like

a translation, rotation, reflection or glide reflection?

Proof. Let l be the x-axis, m be the line passing through the origin, (0, 0) and (1, 1),

and n be the line y = 1. Note that R90◦

(0,0) is a composition of two reflections Rm◦Rl,

where RL denotes the reflection along the line L. Similary, R270◦

(1,1) = Rn ◦ Rm.

Therefore, R270◦

(1,1) ◦ R90◦

(0,0) = Rn ◦ Rm ◦ Rm ◦ Rl = Rn ◦ Rm is the composition of

two reflections along parallel lines. The orthogonal vector sending l to m is (0, 1).
Therefore, the compostion is translation by the vector (0, 2). �

4. Identify the Cartesian plane with the complex plane Z = X +
√
−1Y ∈ C ↔

(X,Y ).

4a. Prove that the equation of a straight line passing through B and C in C is
given by ĀZ +AZ̄ =

√
−1(BC̄ − B̄C), where A =

√
−1(B − C).

4b. Prove that the perpendicular to the line AZ̄ + ĀZ = c, for A ∈ C, c ∈ R, at a
point B lying on the line is given by

(
√
−1A)Z + (

√
−1A)Z̄ = (

√
−1A)B + (

√
−1A)B̄.

4c. Using the above, or otherwise, prove that the equation of tangent at a point B
on a circle ZZ̄ − CZ̄ − C̄Z + CC̄ = r2 is given by

(B − C)Z̄ + (B̄ − C̄)Z = BB̄ − CC̄ + r2.

Proof. 4a. Let us denote
√
−1 by i. Then, a general equation of a line is AZ̄+ĀZ =

c. Since this line passes through B and C, we have

AB̄ + ĀB = c

AC̄ + ĀC = c

Therefore, A(B̄ − C̄) + Ā(B − C) = 0

Hence A(B̄ − C̄) is purely imaginary. Suppose it is λ′i. Therefore,

A =
iλ′

B̄ − C̄
=

iλ′

‖B − C‖ (B − C)

= iλ(B − C),

for some λ ∈ R.
Now substituting Z = B,

c = ĀB +AB̄ = iλ(B − C)B + iλ(B − C)B̄

= −iλB̄B + iλC̄B + iλBB̄ − iλCB̄

= iλ(BC̄ − B̄C).

Thus the equation reduces to

iλ(B − C)Z̄ + iλ(B − C)Z = iλ(BC̄ − B̄C)

or equivalently, after cancelling λ

{i(B − C)}Z̄ + {i(B − C)}Z = i(BC̄ − B̄C).
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This completes the proof.
4b. Note that multiplication by i corresponds to rotation by 90◦. Also the lines

AZ̄ + ĀZ = c for different values of c are parallel to each other.
Now consider the line L : AZ̄ + ĀZ = 0, the line parallel to the given line

passing through the origin 0 ∈ C. The points on the perpendicular line M
satisfies the condition that a 90◦ rotation on the points of M give points on L,
That is, if W ∈ M , iW ∈ L. That is,

A(iW ) + Ā(iW ) = 0

is the equation for M . Rewriting the equation of M , and multiplying by −1,
we get

(iA)W̄ + (iA)W = 0.

The line we seek should therefore be of the form (iA)W̄ + (iA)W = c and it
passes through B. Thus,

c = iAB̄ + (iA)B

as was to be proved.
4c. We need to find the line perpendicular to the line BC which passes through B.

The line BC has the formula

i(B − C)Z̄ + (i(B − C))Z = i(BC̄ − B̄C).

Let A = i(B − C). The line perpendicular to this, passing through B has the
formula,

(iA)Z̄ + (iA)Z = (iA)B̄ + (iA)B

which we simplify as

−(B − C)Z̄ − (B̄ − C̄)Z = −(B − C)B̄ − (B̄ − C̄)B,

(B − C)Z̄ + (B̄ − C̄)Z = (B − C)B̄ + (B̄ − C̄)B,

(B − C)Z̄ + (B̄ − C̄)Z = BB̄ − CB̄ + B̄B − C̄B

= BB̄ − CC̄ +BB̄ − CB̄ −BC̄ + CC̄

= BB̄ − CC̄ + (B − C)(B − C)

= BB̄ − CC̄ + ‖B − C‖2

= BB̄ − CC̄ + r2

as was to be proved.
�

5. Show that under circular inversion with respect to the unit circle centered at the
origin, a circle with centre C and radius r, inverts into a circle with

centre =
C

CC̄ − r2
; radius =

r

CC̄ − r2
.

Proof. Suppose W be a point in the inverted circle. This means that its inversion,
1/W̄ lies in the original circle, that is

∥

∥

∥

∥

1

W̄
− C

∥

∥

∥

∥

= r.
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Squaring and expanding we get the following sequence of equations

1

W̄

1

W
− C

W
− C̄

W̄
+ CC̄ = r2;

1− CW̄ − C̄W +WW̄ (CC̄ − r2) = 0;

WW̄ − C

CC̄ − r2
W̄ − C̄

CC̄ − r2
W +

1

CC̄ − r2
= 0;

Setting A = C/(CC̄ − r2) the equation reduces to

WW̄ −AW̄ − ĀW +
1

CC̄ − r2
= 0;

WW̄ −AW̄ − ĀW +AĀ+
1

CC̄ − r2
−AĀ = 0;

(W −A)(W −A) = AĀ− 1

CC̄ − r2

=
CC̄

(CC̄ − r2)2
− 1

CC̄ − r2

=
CC̄ − CC̄ + r2

(CC̄ − r2)2

=

(

r

CC̄ − r2

)2

.

which is nothing but a circle with

centre = A =
C

CC̄ − r2
and radius =

r

CC̄ − r2
.

�

6. Suppose we are given rays
−→
Aa ||| −→Bb and

−−→
A′a′ |||

−−→
B′b′. Also assume that AB ∼=

A′B′, and ∠BAa ∼= ∠B′A′a′. Prove then ∠ABb ∼= ∠A′B′b′.

Proof.

a

b

a′

b′

α

β

α

β

A

B A′

B′

K

L

Q′

Q

Suppose that ∠A′B′b′ > ∠ABb. Then let
−−−→
B′Q′ be the ray such that ∠ABb =

∠A′B′Q′ = β. Since this ray is in the interior of ∠A′B′b′, it must meet
−−→
A′a′. Let

the point of intersection be Q′. Mark Q on
−→
Aa such that AQ ∼= A′Q′. Join BQ.
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In triangles ABQ and A′B′Q′, BA ∼= B′A′ (given), ∠BAQ ∼= ∠B′A′Q′ (given)
and AQ ∼= A′Q′ (by construction). Therefore by SAS (Axiom C6), △ABQ ∼=
△A′B′Q′. Thus ∠ABQ ∼= ∠A′B′Q′. Now by construction ∠A′B′Q′ ∼= ∠ABb.

Therefore, ∠ABQ ∼= ∠ABb which is only possible if Q ∈ −→
Bb. But that would imply

that
−→
Aa intersects

−→
Bb which contradicts the fact that they are limiting parallels.

Therefore ∠A′B′b′ ≤ ∠ABb. Now reversing the roles of the primed and the un-
primed vertices, the same argument will say that ∠ABb ≤ ∠A′B′b′, and hence they
are equal. �


