Quiz 4

Date : November 18, 2013, Total time : 50 minutes, Total points : 20 points.

Name: \qquad Reg.No.:

All the points and lines in this quiz are in $\mathbb{R P}^{2}$.

1. Prove that the four lines

$$
\begin{aligned}
X-Y & =0, & 2 X-2 Y+Z & =0 \\
X-Y+2 Z & =0, & X-Y-Z & =0
\end{aligned}
$$

in $\mathbb{R P}^{2}$ are concurrent. What is the common point?

$$
4 \text { points. }
$$

2. Find the cross ratio of the above pencil.

4 points.
3. Consider the points $A=(0: 0: 1), B=(0: 1: 1), C=(0: 2: 1)$ and $D=(0: 3: 1)$ on the line $X=0$. Suppose we have a projective transformation T such that

$$
\begin{aligned}
A^{\prime} & :=T(A)=(0: 0: 1) \\
B^{\prime} & :=T(B)=(2: 0: 1) \\
C^{\prime} & :=T(C)=(4: 0: 1) .
\end{aligned}
$$

3a. Consider the projectivity from $X=0$ to $Y=0$ which takes $A \mapsto A^{\prime}, B \mapsto B^{\prime}$ and $C \mapsto C^{\prime}$. Is this projectivity a perspectivity? (If you are using a theorem, mention it clearly.)

$$
2 \text { points. }
$$

3b. Find $D^{\prime}=T(D)$, providing necessary justification and without using problem 4.

6 points.
4. Suppose in the situation of the previous problem, we are also given that $T(0$: $1: 0)=(1: 0: 0), T(1: 0: 0)=(0: 1: 0)$ and $T(1: 1: 1)=(2: 1: 1)$. What is the matrix for T ?

4 points.

