Quiz 3

Date : November 5, 2013, Total time : 30 minutes, Total points : 20 points.

Name: \qquad Reg.No.:

1. Find

$$
\left(\frac{3}{5} \mathbf{i}+\frac{4}{5}\left(\frac{5}{13} \mathbf{j}+\frac{12}{13} \mathbf{k}\right)\right)^{2}
$$

2 points.
2. In $\mathbb{R} \mathbb{P}^{2}$, what is the line passing through the points $(1: 0: 2)$ and $(0: 1: 1)$?

4 points.
3. What is the point of intersection of the lines $X+2 Z=0$ and $Y+Z=0$ in $\mathbb{R} \mathbb{P}^{2}$?

1 point.
4. Take a deep breath.

0 point.
5. Consider the coordinates in the X-Y plane :
$A=(0,2,0)$
$B=(-1,1,0)$
$C=(0,0,0) \quad D=(1,1,0)$
$E=\left(-\frac{1}{2}, \frac{3}{2}, 0\right)$
$F=\left(-\frac{1}{2}, \frac{1}{2}, 0\right)$
$G=\left(\frac{1}{2}, \frac{3}{2}, 0\right)$
$H=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$.

Consider the figure obtained by joining the line $A B, B C, C D, D A$ and $E F$ and $G H$.

Figure 1. Figure for problem 5

5a. Let $S=(0,-1,1)$. Find the projection of the figure $A B C D$ on the $X-Z$ plane $(Y=0)$. Suppose the projections of the points are A, B, C and D are A^{\prime}, B^{\prime}, C^{\prime} and D^{\prime} respectively.

4 points.
5b. Find $\overleftrightarrow{A^{\prime} B^{\prime}} \cap \overleftrightarrow{C^{\prime} D^{\prime}}$ and $\overleftrightarrow{A^{\prime} C^{\prime}} \cap \overleftrightarrow{B^{\prime} D^{\prime}}$
8 points.
5 c. Can you describe the line where these two intersections lie in terms of projective plane?

1 point.
Problem to muse about on the way home: Can you guess, without computing, where $E^{\prime} F^{\prime} \cap G^{\prime} H^{\prime}$ will lie?

0 point.

