Tutorial

Solution to a question asked in the tutorial. This particular problem uses something which was not done in class and hence won't be a part of the mid-sem.

1. The question

Problem : If $A B C D$ is a Saccheri quadrilateral, show that $C D>A B$ if and only if the angles at C, D are acute.

Solution is very easy once we know which theorem to use. The theorem we use is the following.
1.0.1. Proposition. Let $A B C D$ be a quadrilateral with right angles at A and B, and unequal sides $A C$ and $B D$. Then the angle C is greater than the angle at D if and only if $A C<B D$.

I'll give a proof of this, just because it is easy.
Proof. Consider the diagram 1. Suppose that $A C<B D$. Choose E on $B D$ such that $A C=B E$.

Figure 1. Proposition used in the solution

Then $A B C E$ is a Saccheri quadrilateral. Therefore $\angle A C E=\angle C E B$. On the other hand, since $B * E * C, \angle A C D>\angle A C E$. Since $\angle C E B$ is an exterior angle to the triangle $\triangle C E D, \angle C E B>\angle C D B$. Therefore, $\angle A C D>\angle A C E=\angle C E B>$ $\angle C D B$.

Thus $A C<B D \Longrightarrow C>D$.
Similarly $A C>B D \Longrightarrow C<D$.
$A C=B D \Longrightarrow C=D$ (being a Saccheri quadilateral).
This proves that the statement is if and only if.
Now the proof of the problem is very easy.
Solution of the problem. Let $A B C D$ be a Saccheri quadrilateral, and suppose E and F are the mid points of $A B$ and $C D$ respectively. Consider figure 2. Now by a propositon we proved in class, $\angle D F E=\angle B E F=90^{\circ}$.

Now if $C D>A B, F D=\frac{1}{2} C D>\frac{1}{2} A B=E B$. Now $F E D B$ is a quadrilateral with F and E being one right angles. Therefore by the proposition proved above, $\angle B>\angle D$. Now the problem follows from the fact that $\angle B$ is given to be 1 right angle.

Figure 2. Problem of hyperbolic Sachheri quadrilaterals

