Hyperbolic geometry: sum of angles and Poincaré model

1. Sum of angles

1.1. Angle of parallelism.

1.1.1. Theorem. The angle of parallelism varies inversely with the segment.
(1) $A B<A^{\prime} B^{\prime} \Longleftrightarrow \alpha(A B)>\alpha\left(A^{\prime} B^{\prime}\right)$;
(2) $A B \cong A^{\prime} B^{\prime} \Longleftrightarrow \alpha(A B)=\alpha\left(A^{\prime} B^{\prime}\right)$.

Proof. We shall just prove that $A B \cong A^{\prime} B^{\prime} \Longrightarrow \alpha(A B)=\alpha\left(A^{\prime} B^{\prime}\right)$ and $A B<$ $A^{\prime} B^{\prime} \Longrightarrow \alpha(A B)>\alpha\left(A^{\prime} B^{\prime}\right)$. Once we have these, reversing the roles of $A B$ and $A^{\prime} B^{\prime}$, we get the other implication about inequalities. And putting all of these together we get the implications in the other direction.

Thus first assume that $A B \cong A^{\prime} B^{\prime}$ (figure 1). Then by ASL, $\angle B A a \cong \angle B^{\prime} A^{\prime} a^{\prime}$. Therefore, $\alpha(A B)=\alpha\left(A^{\prime} B^{\prime}\right)$.

Figure 1. Angles of parallelism
Now suppose that $A B<A^{\prime} B^{\prime}$ (figure 2).

- Mark C on $\overrightarrow{A B}$ such that $A C \cong A^{\prime} B^{\prime}$.
- Let $\overrightarrow{C c}$ be prependicular to $A B$ and on the same side as $\overrightarrow{B b}$.
- Let $a^{\prime \prime}$ be such that $\overrightarrow{A a^{\prime \prime}} \| \overrightarrow{C c}$.

Then by what we have already proved, $\alpha\left(A^{\prime} B^{\prime}\right)=\alpha(A C) \cong \angle C A a^{\prime \prime}$.
\xrightarrow{I} claim that $\overrightarrow{B b}$ intersects the ray $\overrightarrow{A a^{\prime \prime}}$. Suppose $\overrightarrow{B b}$ does not intersect the ray $\overrightarrow{A a^{\prime \prime}}$. Then $\overrightarrow{B b}$ is a limiting parallel to $\overrightarrow{C c}$.

Fact we assume : $\overrightarrow{B b}$ is a limiting parallel to both $\overrightarrow{A a^{\prime \prime}}$ and $\overrightarrow{C c}$. This follows from the proof of the fact that $\|\|$ is an equivalence relation.
Therefore, $\alpha(B C)=90^{\circ}$. Which cannot be by (L). Therefore, $\overrightarrow{B b}$ intersects the ray $A a^{\prime \prime}$. Therefore $\alpha(A B)>\angle C A a^{\prime \prime}=\alpha\left(A^{\prime} B^{\prime}\right)$. This completes the proof by what we discussed in the first paragraph.

2

Figure 2. Angle of parallelism - II

Our aim is to prove the following result on a hyperbolic plane.
1.1.2. Theorem. In a hyperbolic plane, the sum of angles of any triangle is less than two right angles.

Before that we prove the following proposition.
1.1.3. Proposition. If $A B$ is a segment, with limiting parallel rays $\overrightarrow{A a}$ and $\overrightarrow{B b}$ emanating from A and B, then the exterior angle β at B is strictly greater than the interior angle α at A.

Figure 3. External angle
Proof. Let $\overrightarrow{A c}$ be the ray through A on the same side of A as $\overrightarrow{A a}$ and making an angle β with $A B$. Then $\overrightarrow{A c} \| \overrightarrow{B b}$. Therefore $\alpha \leq \beta$.

Thus we have to rule out the case $\alpha=\beta$. Suppose that happens. Then let $\overrightarrow{A a^{\prime}}$ and $\overrightarrow{B b^{\prime}}$ be the opposite rays as in figure 3. Then $\angle B A a^{\prime} \cong \angle A B b$. Therefore by ASAL (top angles are the same as the opposite lower angles), $\overrightarrow{A a^{\prime}}\left\|\| \overrightarrow{B b^{\prime}}\right.$. Now the sum of the top angles is the same as the sum of the bottom angles is the same as 180°. This contradicts (L) as the two limiting parallels cannot lie on the same straight line.
Proof of theorem 1.1.2. We know that there exists a Saccheri quadrilateral such that the sum of the top two angles is the same of the angles of the given triangle.

Figure 4. Saccheri Quadrilateral corresponding to a triangle
\{fig:sactrngl\}
Let $A B C D$ be such a quadrilateral (figure 4). We want to prove that $\delta<90^{\circ}$. Note that the limiting parallels from C and D define the angles $\gamma, \beta . \alpha=\alpha(A C)=$ $\alpha(B D)$. Note $\delta+\alpha+\beta=180^{\circ}$. On the other hand the exterior angle theorem says that $\beta>\gamma$. Therefore, $2 \delta=\delta+\alpha+\gamma<\delta+\alpha+\beta=180^{\circ}$. Therefore, $\delta<90^{\circ}$. This completes the proof.

2. Hyperbolic geometry: Poincaré model

Next we shall see a model for the above geometry.

2.1. The Poincaré model.

2.1.1. Just described the points and lines. The rest will be done after mid-sem.

