Hyperbolic geometry: sum of angles of a triangle

1. Saccheri Quadrilaterals

1.1. Some preliminary results.

1.1.1. Theorem. Given a triangle $\triangle A B C$, there is a Saccheri quadrilateral for which the sum of two top angles is equal to the sum of three angles of the triangle.

Proof. Refer to figure 1.

Figure 1. Saccheri quadrilateral and triangle
Let $\triangle A B C$ be given. D and E are the mid-points of $A B$ and $A C$ respectively. Join D and E be a line and drop perpendiculars from A, B and C. Using the facts that $A D=D B, A E=E C$ and opposite angles are equal, we conclude that $\triangle A D G \cong \triangle B D F$ and $\triangle A G E \cong \triangle C H E$. Therefore, $\angle F B C+\angle H C B=$ $\angle F B D+\angle D B C+\angle E C B+\angle E C H=\angle D A G+\angle A B C+\angle A C B+\angle G A E=$ $\angle A B C+\angle A C B+\angle B A C$ as was to be proved.
1.1.2. Exercise. This is not all. Find out the missing case and provide a proof for that.
1.1.3. Theorem (ASAL). Given four rays $\overrightarrow{A a}, \overrightarrow{B b}, \overrightarrow{A^{\prime} a^{\prime}}$ and $\overrightarrow{B^{\prime} b^{\prime}}$, assume that $\xrightarrow{\angle B A a}=\xrightarrow{\angle B^{\prime}} A^{\prime} a^{\prime}, A B=A^{\prime} B^{\prime}$ and $\angle A B b=\angle A^{\prime} B^{\prime} b^{\prime}$. Then $\overrightarrow{A a} \| \overrightarrow{B b}$ if and only if $\overrightarrow{A^{\prime} a^{\prime}} \| \overrightarrow{B^{\prime} b^{\prime}}$

Proof. We prove by contradiction. Suppose $\overrightarrow{A a}\left|\left|\mid \overrightarrow{B b}\right.\right.$ but $\left.\left.\overrightarrow{A^{\prime} a^{\prime}}\right| \chi\right| \overrightarrow{B^{\prime} b^{\prime}}$. Then two things can happen:

Figure 2. Proof of ASAL
(1) $\overrightarrow{B^{\prime} b^{\prime}}$ meets $\overrightarrow{A^{\prime} a^{\prime}}$ (the red line); or
(2) The limiting parallel to $\overrightarrow{B^{\prime} b^{\prime}}$ through A^{\prime} lies between $A^{\prime} a^{\prime}$ and $B^{\prime} b^{\prime}$. (This would be the case of $\overrightarrow{B^{\prime} b^{\prime}}$ were the green ray.)
We shall prove the first case and leave the second case as an exercise.
Suppose Q^{\prime} be the point where $A^{\prime} a^{\prime}$ meets $B^{\prime} b^{\prime}$. Cut of a point Q on the ray $\overrightarrow{A a}$ at a distance $A^{\prime} Q^{\prime}$ from A. Join A and Q.

Now $\angle B A a \cong \angle B^{\prime} A^{\prime} a^{\prime}, A B \cong A^{\prime} B^{\prime}$ (given) and $A Q \cong A^{\prime} Q^{\prime}$ (by construction) implies that $\triangle A B Q \cong \triangle A^{\prime} B^{\prime} Q^{\prime}$. In particular $\angle A B Q \cong \angle A^{\prime} B^{\prime} Q^{\prime} \cong \angle A B b$ implies that $Q \in \overrightarrow{B b}$ by (C4) which says that there exists a unique ray which attends a
given angle on a given side of a ray. Therefore, $\overrightarrow{A a}$ cannot be a limiting parallel to $\overrightarrow{B b}$ which is a contradiction.

Thus $\overrightarrow{A a}\left\|\overrightarrow{B b} \Longrightarrow \overrightarrow{A^{\prime} a^{\prime}}\right\| \overrightarrow{B^{\prime} b^{\prime}}$. The reverse inclusion follows by reversing the roles of the primed letters and the unprimed letters.
1.1.4. Theorem (ASL). Suppose we are given rays $\overrightarrow{A a} \| \mid \overrightarrow{B b}$ and $\overrightarrow{A^{\prime} a^{\prime}}\left|\left|\mid \overrightarrow{B^{\prime} b^{\prime}}\right.\right.$. Also assume $A B \cong A^{\prime} B^{\prime}$ and $\angle B A a \cong \angle B^{\prime} A^{\prime} a^{\prime}$. Then $\angle A B b \cong \angle A^{\prime} B^{\prime} b^{\prime}$.

Proof. Exercise.

1.2. Hyperbolic Plane.

1.2.1. Definition. A Hilbert plane satisfying the axiom L is called a Hyperbolic plane.
1.2.2. Definition. For any segment $A B$, let b be the line perpendicular to $A B$ at B. Chose one ray $\overrightarrow{B b}$ on b. Let $\overrightarrow{A a}|\mid \overrightarrow{B b}$. Then $\alpha(A B):=\angle B A a$ is called the angle of parallelism of the segment $A B$.
1.2.3. Remark. Because of the axiom (L), the angle of parallelism is always acute $\left(<90^{\circ}\right)$.

