Some remaining bits and some introduction to hyperbolic geometry

1. Remaining circular inversion

1.1. Cross ratio. Before we go into hyperbolic geometry, let us introduce a concept : cross ratio. We shall deal with them in detail later, but right now we just note that circular inversion respects cross ratios.
1.1.1. Definition. Suppose A, B, P and Q be four points on \mathbb{R}^{2}. Then the cross ratio is defined to be the number

$$
(A B, P Q)=\frac{A P}{A Q} \div \frac{B P}{B Q}
$$

1.1.2. Proposition. Let Γ be a circle with centre O. If A, B, P and Q are four distinct points all different from the center O, then the circular inversion of these points $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} satisfy

$$
(A B, C D)=\left(A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right) .
$$

Proof. First consider O, A and P. Since $O A \cdot O A^{\prime}=O P \cdot O P^{\prime}=r^{2}$,

$$
\frac{O A}{O P}=\frac{O P^{\prime}}{O A^{\prime}}
$$

First suppose O, A and P are not collinear. Since the angle O is common the triangles $O A P$ and $O P^{\prime} A^{\prime}$ are similar and hence

$$
\frac{A P}{A^{\prime} P^{\prime}}=\frac{O A}{O P^{\prime}} .
$$

Even if the three points are collinear, we have

$$
\frac{O A}{O P^{\prime}}=\frac{O P}{O A^{\prime}}=\frac{O A-O P}{O P^{\prime}-O A^{\prime}}=\frac{A P}{A^{\prime} P^{\prime}}
$$

Using the same argument for A and Q we get

$$
\frac{A Q}{A^{\prime} Q^{\prime}}=\frac{O A}{O Q^{\prime}}
$$

Therefore

$$
\frac{A P}{A^{\prime} P^{\prime}} \div \frac{A Q}{A^{\prime} Q^{\prime}}=\frac{O Q^{\prime}}{O P^{\prime}} .
$$

Doing this for B, P and Q we get

$$
\frac{B P}{B^{\prime} P^{\prime}} \div \frac{B Q}{B^{\prime} Q^{\prime}}=\frac{O Q^{\prime}}{O P^{\prime}} .
$$

Comparing the last two equations we get the result.
Thus circular inversion preserves cross ratios. We shall revisit cross ratios when we do projective geometry.

