Circular Inversion and Hyperbolic geometry

1. Circular Inversion

1.1. Stereographic projection is conformal.

1.1.1. Clircles are circles and lines.
1.1.2. Now the result follows from the fact that reflections take clircles to clircles. For conformality, we just have to check that stereographic projection is conformal. Which is what we do the next.

Figure 1. Stereographic projection
1.1.3. Suppose Γ_{1} and Γ_{2} are two circles which intersect at a point P. Consider the line ℓ passing through N and P. At P, let m_{1} be the tangent to Γ_{1} and m_{2} be the tangent to Γ_{2}. Let Q_{i} be the plane containing ℓ and m_{i} for $i=1,2$. Suppose Q_{i} intersect the $\mathbb{C}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=0\right\}$ plane at the lines n_{1} and n_{2} repectively. Note that the steregraphic projection of $P, \psi(P)$ lies on ℓ and on \mathbb{C} and hence n_{1} and n_{2} intersect at $\psi(P)$.
1.1.4. Let set up some notation:
$\langle A, B\rangle \quad$ The unique plane containing the object/objects A, B etc.,
$Q_{i} \quad\left\langle\ell, m_{i}\right\rangle$,
$\Pi_{i} \quad\left\langle\Gamma_{i}\right\rangle \ni m_{i}$,
$T_{p} \quad\left\langle m_{1}, m_{2}\right\rangle$,
\mathbb{C} the $X-Y$ plane,
$\angle l m \quad$ Angle between the curves l and m,
$\angle A B C \quad \angle \overleftrightarrow{A B} \overleftrightarrow{B C}$
1.1.5. Note that there are maps $p_{i}: \Pi_{i} \rightarrow \mathbb{C}$ given by $p_{i}(A)=\overleftarrow{N A} \cap \mathbb{C}$
1.1.6. Exercise. Prove that p_{i} is a bijection for $i=1,2$.
1.1.7. Note that $p_{i}\left(\Gamma_{i}\right)=\psi\left(\Gamma_{i}\right)$ and $p_{i}\left(m_{i}\right)=n_{i}$ as is evident from the definitions. Therefore n_{i} are tangent to $\psi\left(\Gamma_{i}\right)$. Thus we only have to prove that $\angle m_{1} m_{2}=$ $\angle n_{1} n_{2}$
1.1.8. Lemma. Suppose Ω_{1} and Ω_{2} be two planes intersecting at the line μ. Suppose Σ and Λ be two planes intersecting the line μ at points S and L, say. If the perpendiculars σ and λ to these planes from their points of intersection (S and $L)$ with μ meet at a point Q such that $\triangle Q S L$ is isosceles with $Q S \cong Q L$, then $\angle\left(\Omega_{1} \cap \Sigma\right)\left(\Omega_{2} \cap \Sigma\right)=\angle\left(\Omega_{1} \cap \Lambda\right)\left(\Omega_{2} \cap \Lambda\right)$.

Figure 2. Angles between planes

Proof. This is easy. Consider the midpoint of $S L$, say R and consider the plane Ξ perpendicular to $S L$ at R. Then the reflection along Ξ keeps Ω_{i} intact, interchanges S and T and interchanges $Q S$ with $Q L$. Therefore it also interchanges Σ and Λ. As reflection preserves angles we have the result.
1.1.9. For us, $\Omega_{i}=Q_{i}, \Sigma=T_{P}$ and $\Lambda=\mathbb{C}$. Thus we have to show that the prependicular λ_{P} of T_{P} at P intersects the prependicular $\lambda_{\psi(P)}$ of \mathbb{C} at $\psi(P)$ at, say, Q and we have to show that $Q P \cong Q \psi(P)$. For that consider the plane $\Delta=\langle N, O, P\rangle$ where O is the centre of the sphere. Since $P^{\prime}=\psi(P)$ lies on the line $\overleftrightarrow{N P}$, it lies on Δ. Furthermore, $\lambda_{\psi(P)}=\overleftrightarrow{P Q}$ is parallel to $O N$ and passes through $P^{\prime}=\psi(P)$ and hence lies on Δ. Thus the whole picture above lies on Δ. Since $O N=O P$ is the radius of the sphere, $\angle O P N=\angle O N P$. This means that the opposite angle $\angle Q P \psi(P)=\angle O P N=\angle O N P=\angle Q \psi(P) P$, where the last equality follows as they are alternate angles on parallel lines $O N$ and $Q \psi(P)$. This proves that $Q P \psi(P)$ is an isosceles triangle with $Q P=Q \psi(P)$ as was to be proved. Thus the hypothesis of the above lemma holds. Therefore,

$$
\angle m_{1} m_{2}=\angle\left(Q_{1} \cap T_{P}\right)\left(Q_{2} \cap T_{P}\right)=\angle\left(Q_{1} \cap \mathbb{C}\right)\left(Q_{2} \cap \mathbb{C}\right)=\angle n_{1} n_{2}
$$

1.2. Circular inversion is conformal.

1.2.1. Since we already checked conformality of the stereographic projection, let us first we give a proof using that. For that first we need to see that if ρ denotes a reflection of the sphere along $z=0$, then $\psi \circ \rho \circ \psi^{-1}$ corresponds to circular inversion along the unit circle around origin. Checking conformality of this is enough as any

Figure 3. Figure for the application of the lemma
other circular inversion can be obtained by this by a composition of translation and scaling, both of which are conformal. Since ρ and ψ are conformal, this is all we have to check.
1.2.2. Note that the reflection of the sphere S^{2} along the complex plane corresponds to the transformation $(u, v, w) \mapsto(u, v,-w)$. Now $\psi(u, v, w)=(u+i v) /(1-w)$ and $\psi(u, v,-w)=(u+i v)(1+w)$. Suppose Z be a complex number. We had written down formulas for u, v and w in terms of Z last time. $Z=(u+i v) /(1-w)$.

$$
\begin{aligned}
\psi \circ \rho \circ \psi^{-1}(Z) & =\psi \circ \rho(u, v, w)= \\
\psi(u, v,-w) & =\frac{u+i v}{1+w}=\frac{(u+i v)(1-w)}{1-w^{2}} \\
& =\frac{(u+i v)(1-w)}{u^{2}+v^{2}}=\frac{1-w}{u-i v}=\frac{1}{\bar{Z}} .
\end{aligned}
$$

Thus stereographic projection of the reflection is the circular inversion along the unit circle centered at origin.

