Stereographic Projection and Circular Inversion

1. Extended complex line: Riemann sphere

1.1. Adding ∞.

1.1.1. Consider the extended complex number system $\mathbb{C} \cup\{\infty\}$, with the following convention :

$$
\begin{aligned}
Z+\infty & =\infty, & \frac{Z}{\infty} & =0 \\
W \cdot \infty & =\infty, & \frac{W}{0} & =\infty
\end{aligned}
$$

for any complex number Z and any non-zero complex number W. and we say that the following operatons are undefined :

$$
\infty \infty, \quad \infty+\infty, \quad \infty 0, \quad \frac{\infty}{\infty}, \quad \frac{0}{0}, \quad \frac{\infty}{0} .
$$

We denote the extended complex plane by \mathbb{C}^{+}.

1.2. Viewing the extended line as a sphere : Stereographic projection.

1.2.1. Think of the complex plane as being embedded in \mathbb{R}^{3} as the plane $z=0$: $j: \mathbb{C} \hookrightarrow \mathbb{R}^{3}$ where $j(x+i y)=(x, y, 0)$. Consider the unit sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3} .
$$

Let us define the north pole, $N=(0,0,1)$. Now we construct map $\psi: S^{2} \backslash\{N\} \rightarrow \mathbb{C}$ as follows. For any point $P \in S^{2}, P \neq N$, consider the intersection of the line passing through N and P and the plane $z=0$. Suppose the intersection is P^{\prime}. Then the stereographic projection of P from N is $j^{-1}\left(P^{\prime}\right)$.

1.2.2. Let us compute some formulas. Suppose $P=(u, v, w)$ and $Z=j^{-1}\left(P^{\prime}\right)=$ $x+i y$. Then the distance of P from the vertical line $O N$ is $\rho=\sqrt{u^{2}+v^{2}}$. Suppose the perpendicular from P meets $O N$ at $O^{\prime} . r=\sqrt{x^{2}+y^{2}}$ is the distance of Z from the origin O. Comparing the sides of the similar triangles $\triangle P O^{\prime} N$ and $\triangle Z O N$, we get

$$
\frac{r}{1}=\frac{\rho}{1-w}
$$

Therefore,

$$
\frac{\rho}{r}=\frac{1-w}{1}=\frac{u}{x}=\frac{v}{y} .
$$

Therefore, $x=u /(1-w)$ and $y=v /(1-w)$. Thus,

$$
Z=\frac{u+i v}{1-w} ; \quad \bar{Z}=\frac{u-i v}{1-w} .
$$

Thus, $\psi(u, v, w)=(u+i v) /(1-w)$.
1.2.3. Exercise. Construct the inverse of the above map: Write u, v, w in terms of Z where $Z=(u+i v) /(1-w)$. You should get the following:

$$
\begin{aligned}
u & =\frac{Z+\bar{Z}}{Z \bar{Z}+1} \\
w & =\frac{Z \bar{Z}-1}{Z \bar{Z}+1}
\end{aligned} \quad v=\frac{i(\bar{Z}-Z)}{Z \bar{Z}+1}
$$

1.2.4. Now we prove that the stereographic projection takes circles on the unit sphere not passing through N to circles on the complex plane and vice versa. All the circles passing through N are mapped to lines and the lines on the complex plane are mapped back to circles passing through N.
1.2.5. Consider the plane $a u+b v+c w=d$, or $(a, b, c) \cdot(u, v, w)=d$. Since $(a, b, c) \cdot(u, v, w) \leq \sqrt{a^{2}+b^{2}+c^{2}} \sqrt{u^{2}+v^{2}+w^{2}}$,

$$
\sqrt{u^{2}+v^{2}+w^{2}} \geq \frac{(a, b, c) \cdot(u, v, w)}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

Note that the bound on the right is achieved for $(u, v, w)=(d a, d b, d c) / \sqrt{a^{2}+b^{2}+c^{2}}$.
Thus the shortest distance from the origin is $d / \sqrt{a^{2}+b^{2}+c^{2}}$. Thus, the plane will intersect the sphere if and only if $d^{2}<a^{2}+b^{2}+c^{2}$.

Suppose this condition holds for the plane $a u+b v+c w=d$ and suppose the intersection, which is a circle, does not pass through N. The necessary and sufficient condition for the circle to pass through N is $d=c$.
1.2.6. Exercise. Check that for P on such an intersection (with $c \neq d$), Z satisfies the equation

$$
Z \bar{Z}-\bar{C} Z-C \bar{Z}+C \bar{C}=\frac{a^{2}+b^{2}+c^{2}-d^{2}}{c-d}, \text { where } C=\frac{a+i b}{c-d}
$$

which is a circle with center C and radius $\sqrt{\left(a^{2}+b^{2}+c^{2}-d^{2}\right) /(c-d)}$.
1.2.7. Exercise. When the plane passes through N (that is, $d=c$), prove that the image of the intersection circle $(\backslash\{N\})$ is the line

$$
(a-i b) Z+(a+i b) \bar{Z}=2 d
$$

Thus if we think of a line as a circle of infinite radius, the stereographic projection takes circles to circles.

2. Circular Inversion again

2.1. Reflection of the sphere. Recall that the circular inversion along the unit circle centered at origin corresponds to

$$
I(Z)=\frac{1}{\bar{Z}}
$$

2.1.1. In general inversion around a circle of radius r and center C is given by

$$
I(Z)=C+\frac{r^{2}}{\overline{Z-C}}=\frac{C \bar{Z}-C \bar{C}+r^{2}}{\bar{Z}-\bar{C}} .
$$

