Lecture 6 : Conic sections

For this lecture, the main reference is "Roger Fenn : Geometry".

1. Ellipse, Parabola, Hyperbola

Consider a line ℓ making an angle α with the z-axis passing through the origin O. A cone is the two dimensional surface obtained by rotating ℓ around z-axis.
[Picture]
The formula for the cone will be

$$
x^{2}+y^{2}=z^{2} \tan ^{2} \alpha
$$

1.1. Conic sections.

1.1.1. Conic sections are curves determined by the intersection of a cone with a plane. Suppose the plane is given by the equation $a x+b y+c z+d=0$, such that $(a, b, c) \neq(0,0,0)$.

Suppose $c \neq 0$. Then $z=p x+q y+r$ where $p=-a / c, q=-b / c$ and $r=-d / c$. Now substituting back in the equation of a cone, we get a quadratic equation in x and y. Similar analysis can be done when $a \neq 0$ and $b \neq 0$. Thus an equation of a conic is always of the form
(1.1.2) \quad eqn:genconiax $x^{2}+2 h x y+b y^{2}+2 f x+2 g y+c=0$.
1.1.3. The above equation can be rewritten in the form

$$
\left(\begin{array}{lll}
x & y & 1
\end{array}\right)\left(\begin{array}{lll}
a & h & f \\
h & b & g \\
f & g & c
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0
$$

1.1.4. Exercise. Prove that a conic given by the above equation is degenerate, that is, it is a union of two lines if and only if

$$
\operatorname{det}\left(\begin{array}{lll}
a & h & f \\
h & b & g \\
f & g & c
\end{array}\right)=0
$$

1.2. Geometric definiton of conics. There is a description of conics which restricts the definition only to a plane and would make sense on Euclidean plane.

Let ℓ be a line and P be a point not on ℓ. Let e be a positive real number. For a point A let $d(A, \ell)$ be the length of the perpendicular segment from A to ℓ. Then a conic is the set of all points A on the plane such that $d(P, A)=e d(A, \ell) . e$ is called the eccentricity of the conic.

2. School examples

2.1. Ellipse. Circle falls in this class. The general equation of an ellipse is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where a and b are non-zero real numbers.
One can compute the eccentricity of the ellipse to be $\sqrt{1-b^{2} / a^{2}}$ when $a>b$. Therefore, for an ellipse the eccentricity is less than one. This actually determines the ellipse. Note that a circle has $b=a$ and has eccentricity 0 .
2.2. Parabola. The standard formula is

$$
y^{2}=4 a x .
$$

In this case, the eccentricity is exactly 1.
2.3. Hyperbola. The standard equation is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

In this case, the eccentricity is $\sqrt{1+b^{2} / a^{2}}>1$.

3. Classification

3.1. Transformations preserving "shape". We work on coordinate geometry.
3.1.1. It is easy to see that the following procedure preserves distances and angles.

Translations: Given $a, b \in \mathbb{R}$, one can consider the transformation $T_{a, b}$: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ sending $(x, y) \mapsto(x+a, y+b)$. It clearly preserves distances. It is easy to see that it preserves angles too.
Rotations: Given an angle θ, one can consider the rotation $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ sending $(x, y) \mapsto(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$. This is a rotation around the origin. For rotations around other points, one can compose translations and rotations. So rotations around (a, b) by an angle θ will be given by $T_{a, b} \circ R_{\theta} \circ T_{-a,-b}$.
Reflections: The reflection along the x-axis is easy to describe. It is given by $(x, y) \mapsto(x,-y)$. More general reflections can be realized by composing with rotations and translations. It is instructive to write down a formula for reflection along the line $a x+b y+c=0$.
3.1.2. Now the aim is to use these transformations to show that a general quadratic equation like (1.1.2) can be reduced to one of the standard forms we saw in the previous subsection.
3.2. Using transformations to reduce the quadratic to a standard form.
3.2.1. The easy case is when $h=0$, that is the equation of the conic is of the form $a x^{2}+b y^{2}+2 f x+2 g y+c=0$. In this case, we can complete the square and use translation to reduce to the standard form. For example when a and both are non-zero, we can write

$$
\begin{aligned}
& a\left(x^{2}+2 x f / a+(f / a)^{2}\right)+b\left(y^{2}+2 y(g / b)+(g / b)^{2}\right)+c-f^{2} / a-g^{2} / b \\
= & a(x+f / a)^{2}+b(y+g / b)^{2}+\left(c-f^{2} / a-g^{2} / b\right) \\
= & 0 .
\end{aligned}
$$

Now send $x \mapsto x-f / a$ and $y \mapsto y-g / b$.
3.2.2. Exercise. What happens when one of a or b is non-zero? Is there a case when cannot do the above reduction? Explain what happens in that case?
3.2.3. If the $x y$ term is there (or equivalently $h \neq 0$), one can use rotations to get rid of it. Note that doing a rotation changes the equation to a form like

$$
(\cdots) x^{2}+((b-a) \sin 2 \theta+2 h \cos 2 \theta) x y+(\cdots) y^{2}+\text { lower degree terms. }
$$

Thus one can choose θ such that one reduces to the previous case.
3.2.4. Exercise. Can this fail?

