Assignment 3 Due date : November 4, 2013

Total points $=10$
Penalty for submitting on November 5:-1
Penalty for submitting on November $7:-2$
Assignments won't be accepted after November 7.
In the following problems let $M: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an orthogonal isometry (that is, an isometry which takes 0 to 0 .

1. Prove that if $\left(y_{1}, y_{2}, y_{3}\right)=M\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right)=M\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$, then $x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+x_{3} x_{3}^{\prime}=y_{1} y_{1}^{\prime}+y_{2} y_{2}^{\prime}+y_{3} y_{3}^{\prime}$
2. Prove that if we write M as a matrix then $M M^{t}=I$, where ()t denote the transpose of a matrix and I is the 3×3 identity matrix.
3. Prove that $\operatorname{det} M= \pm 1$.
4. Suppose $\operatorname{det} M=1$. Prove that 1 is an eigenvalue for M. Can you find a one dimensional subspace fixed by M. Prove that M is a rotation.
5. Write down a formula for reflection of a point along a plane given by

$$
\left\{X \in \mathbb{R}^{3} \mid X \cdot A=c\right\}
$$

for some fixed vector A and a fixed real number c.
6. If M is an orthogonal transformation with $\operatorname{det}(M)=-1$, what can you say about $M \circ R$ where R is a reflection. You can choose your reflection suitably to make computations simpler.

