Assignment 2 Due date : September 16, 2013

Total points = 10

Penalty for submitting on September 17 : -1 Penalty for submitting on September 19 : -2 Assignments won't be accepted after September 19.

1. Let $\Gamma_{(a,b)}^r$ denote the circle with centre (a,b) and radius r. $S_{(a,b)}^r$ be the circular inversion along $\Gamma_{(a,b)}^r$. Also we fix the symbols for the following operations:

	$\frac{T_{(a,b)}}{\Sigma_r}$	Translation by the vector (a, b) , Scaling by r ; $(x, y) \mapsto (rx, ry)$.
Prove that $S_{(a,b)}^r = T_{(a,b)} \circ \Sigma_r \circ S_{(0,0)}^1 \circ \Sigma_{1/r} \circ T_{(-a,-b)}.$		

2. Using the above exercise, write a formula for S^r_C where C is the complex number C=a+ib as

 $S_C^r(Z)$ = some complex expression in C, Z and r.

3. Complete the proof that circular inversion is conformal.

4. When is S_C^r of $\Gamma^1_{(0,0)}$ a straight line? When is it a circle? In the cases it is a circle, what is its centre and radius?