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Abstract
In this thesis, we study Thurston’s approach to finding complete hyperbolic struc-
tures on 3-manifolds using ideal triangulations. This approach involves solving a
set of equations called the Thurston’s gluing equations. These equations are non-
linear and difficult to solve, so Casson and Rivin developed the method of angle
structures through which they separated Thurston’s equations into a linear and
a non-linear part and extracted geometric information from each part separately.
We also study geometric triangulations of constant curvature manifolds and how
they are related by Pachner moves. We specially focus on understanding geomet-
ric ideal triangulations of cusped hyperbolic 3-manifolds and prove that any two
geometric ideal triangulations have a common geometric subdivision with a finite
number of polytopes. As a result, geometric ideal triangulations of a cusped hy-
perbolic 3-manifold become related by geometric Pachner moves. Along the way,
we will discuss some foundational results in the theory of 3-manifolds, triangula-
tions and hyperbolic geometry which we require for studying the central topics in
this thesis.

ix



x



Contents

Abstract ix

0 Preface 3

1 Basics of 3-manifolds and their triangulations 5
1.1 Triangulations of 3-manifolds . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Cutting 3-manifolds along essential surfaces . . . . . . . . . . . . . . 12
1.3 Geometrization of 3-manifolds . . . . . . . . . . . . . . . . . . . . . . 14

2 Basic hyperbolic geometry 17
2.1 Models of hyperbolic space . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Isometries of hyperbolic space . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Mostow-Prasad rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Margulis lemma and the thick-thin decomposition 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Kleinian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Elementary groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Margulis lemma and the thick-thin decomposition . . . . . . . . . . . 28
3.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Thurston’s gluing equations 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Ideal triangulations and edge parameters . . . . . . . . . . . . . . . . 38
4.3 Gluing consistency equations . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Gluing completeness equations . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Example of the figure eight knot complement . . . . . . . . . . . . . . 49
4.6 Infinitely many geometric triangulations of the figure eight knot

complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Angle structures and the volume functional 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Angle structures and hyperbolicity . . . . . . . . . . . . . . . . . . . . 59

1



2 CONTENTS

5.3 Volume of an ideal tetrahedron . . . . . . . . . . . . . . . . . . . . . . 66
5.4 The volume functional and the space of angle structures . . . . . . . 69
5.5 Leading trailing deformations . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Converse of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Geometric triangulations of constant curvature manifolds 83
6.1 Geometric triangulations of constant curvature manifolds and geo-

metric Pachner moves . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Upper bound on Pachner moves relating geometric triangulations . . 84

7 Geometric ideal triangulations of cusped hyperbolic manifolds 87
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 Intersection of geometric ideal triangulations . . . . . . . . . . . . . . 89

8 Conclusion 97



Chapter 0

Preface

This thesis is of an expository nature and no claim is made to the originality of any
of the results in Chapters 1-6. Chapter 7 is a small extension of known results and
is original.

Chapter 1 This chapter gives a basic introduction to the theory of 3-manifolds and
their triangulations. We state important results in 3-manifold theory such as the
prime decomposition, the JSJ decomposition, and Thurston’s geometrization theo-
rem, and explain their consequences for knot theory and hyperbolic geometry. We
also define basic concepts in the theory of triangulations of 3-manifolds and state
classic theorems such as Pachner’s theorem.

Chapter 2 In this chapter, we give a basic introduction to hyperbolic geometry in
two and three dimensions. We discuss the different models of hyperbolic geome-
try and the classification of isometries of H2 and H3. We also state Mostow-Prasad
rigidity and its important consequences to finding invariants of hyperbolic knots.

Chapter 3 This chapter is devoted to the statement and proof of the Margulis
lemma and the thick-thin decomposition for hyperbolic 3-manifolds. Along the
way, we state and prove properties of Kleinian groups which are required to prove
these theorems.

Chapter 4 In this chapter, we explain Thurston’s edge gluing consistency and glu-
ing completeness equations. We solve these equations for the standard triangula-
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4 CHAPTER 0. PREFACE

tion of the figure eight knot complement and obtain a complete hyperbolic struc-
ture on the knot complement with respect to the standard ideal triangulation. We
also discuss a result by Dadd and Duan [DD16] which shows that there are in-
finitely many geometric triangulations of the figure eight knot complement.

Chapter 5 In this chapter, we discuss Casson and Rivin’s approach of separating
Thurston’s equations into linear and non-linear parts using angle structures. We
prove that the existence of an angle structure on an ideal triangulation of the mani-
fold implies that the manifold admits a complete hyperbolic structure. We state the
formula for calculating the hyperbolic volume of an ideal tetrahedron and define a
volume functional on the space of angle structures using this formula. Finally, we
show that the critical point of the volume functional on the space of angle struc-
tures corresponds to a complete hyperbolic structure on the 3-manifold.

Chapter 6 We state results by Tejas Kalelkar and Advait Phanse on geometric tri-
angulations of compact constant curvature manifolds and how they are related by
Pachner moves in this chapter. We discuss how geometric triangulations are re-
lated by geometric Pachner moves, which is a result proved in [KP19b]. We also
state an upper bound on Pachner moves required to relate two geometric triangu-
lations of the same manifold proved in [KP19a].

Chapter 7 In this chapter, we prove a minor result about geometric ideal triangula-
tions of complete cusped hyperbolic 3-manifolds. We show that any two geometric
ideal triangulations of a cusped hyperbolic 3-manifold admit a common geomet-
ric subdivision which has only finitely many polytopes. In the future, this result
can help us to extend the theorems in [KP19b] and [KP19a] to complete cusped
hyperbolic 3-manifolds.



Chapter 1

Basics of 3-manifolds and their
triangulations

In this chapter, we shall define certain basic terms relating to 3-manifolds and state
a few classic theorems about the topology and geometry of 3-manifolds. Trian-
gulations are an important tool for studying 3-manifolds and the study of sur-
faces which are embedded ‘nicely’ with respect to a given triangulation of the
3-manifold forms the content of normal surface theory. So, we shall also cover
the fundamentals of triangulations and normal surface theory. We have borrowed
many definitions and the statements of many theorems from [Hat07], [Mar16],
[Pur20], [Lic99] and [KP19b].

1.1 Triangulations of 3-manifolds

We first define basic terms related to triangulations of manifolds. We let ∆n denote
the standard n-simplex.

Definition 1.1.1 (Simplicial complex). An abstract simplicial complex K consists of a
finite set K0 of vertices and a family K of subsets of K0 such that if A ∈ K and B ⊂ A,
then B ∈ K. We call the sets in this family the simplexes of the simplicial complex. Also, if
A, B ∈ K and A ⊂ B, we say that A is a face of B.

A realisation of a simplicial complex K is a subspace |K| in some Rn, where the vertices are
realised as points of Rn such that the vertices of each simplex are in general position and
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6 CHAPTER 1. 3-MANIFOLDS AND THEIR TRIANGULATIONS

the simplexes are realised as the convex hull of the vertices. The realisation |K| inherits the
subspace topology from Rn.

We shall abuse terminology and refer to both the abstract simplicial complex K
and its realisation |K| as the simplicial complex K. The dimension of a simplicial
complex is the dimension of the highest dimensional simplex it contains.

Definition 1.1.2 (Join, star and link). If A and B are two disjoint simplexes of a simplicial
complex K, we call the simplex A ∪ B as the join of A and B, which we denote as A ? B.
We define the join of two simplicial complexes K and L to be the simplicial complex

K ? L = {A ? B | A ∈ K, B ∈ L}

The link of a simplex A in a simplicial complex K is defined to be the simplicial complex

lk(A, K) = {B ∈ K | A ? B ∈ K}

The star of a simplex A in the simplicial complex K is defined to be the simplicial complex

st(A, K) = A ? lk(A, K)

Definition 1.1.3 (Piecewise linear homeomorphism). A homeomorphism φ : U → V,
where U and V are open sets in Rn, is said to be piecewise linear if there exists a neigh-
bourhood Np around each point p ∈ U such that the restriction φ|Np is affine linear, that
is, it maps lines to lines.

Definition 1.1.4 (Piecewise linear manifold). A topological n-manifold M is said to be
a piecewise linear manifold if each point of M has a neighbourhood which is homeomorphic
to an open set in Rn and all the transition maps are given by piecewise linear homeomor-
phisms. This neighbourhood is called a co-ordinate chart around that point. Two piecewise
linear n-manifolds are said to be piecewise linearly homeomorphic if they are homeomorphic
as topological manifolds and the homeomorphism induced on the level of co-ordinate charts
is piecewise linear.

We will henceforth use the standard abbreviation ‘PL’ to refer to the phrase ‘piece-
wise linear’.

Definition 1.1.5 (Simplicial triangulation of a manifold). A simplicial triangulation
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Figure 1.1: 1-4 Pachner move

of a PL-manifold M consists of a simplicial complex K along with a PL-homeomorphism
from its linear realisation |K| to M.

We shall now state a few classic theorems in piecewise linear topology which will
help us to understand how we can pass between two triangulations of a manifold
by using local combinatorial moves on the triangulations.

Definition 1.1.6 (Stellar moves). Consider a simplicial complex K. Let A be any simplex

in K and let a be a point in the interior of A. Then, the stellar subdivision K
(A,a)−−−→ K′

consists of removing st(A, K) and replacing it with a ? ∂A ? lk(A, K). This operation is a
local operation which changes K to a new complex K′, which is denoted as K′ = (A, a)K.
The opposite of this move is called a stellar weld and we denote this by K = (A, a)−1K′.

Definition 1.1.7 (Pachner moves). Let K be a simplcial complex of dimension n. Let A
be a k-simplex of K and suppose lk(A, K) = ∂B for some n− k simplex B which is not in
K. Then, the bistellar move κ(A, B) consists of modifying st(A, K) by replacing A ? ∂B
with ∂A ? B. Bistellar moves are also called as Pachner moves. We can view Pachner
moves in another way. Suppose the simplicial complex K has a subcomplex L consisting
of r n-simplexes, such that L is simplicially isomorphic to a disk subcomplex of ∂∆n+1.
Then replacing the subcomplex L with its complement ∂∆n+1 \ L in the boundary of the
n + 1-simplex is defined to be the r-(n + 2− r) Pachner move.

1-4 and 2-3 Pachner moves on a 3-dimensional simplicial complex are shown in
Figure 1.1 and Figure 1.2. By reversing these moves, we will obtain the 4-1 and 3-2
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Figure 1.2: 2-3 Pachner move

Pachner moves. We see that both stellar and bistellar moves are local in nature - by
definition they take place within the star of one simplex in the simplicial complex
K.

Theorem 1.1.1 (Alexander, Newman). Two n-dimensional simplicial complexes are PL
homeomorphic if and only if they are related by a finite sequence of stellar moves.

Theorem 1.1.2 (Pachner, Newman). Two closed simplicially triangulated PL n-manifolds
are PL homeomorphic if and only if they are related by a sequence of bistellar (Pachner)
moves.

There has been considerable interest in making Pachner’s theorem stronger and
understanding the connectivity of different sets of triangulations under specific
kinds of Pachner moves. The following theorem is a step in this direction. We
shall consider more general triangulations in this result, which we define now.

Definition 1.1.8 (3 dimensional pseudo-manifold). Let S be a collection of 3-simplexes
and Φ be a collection of affine face-pairing homeomorphisms between the faces of the sim-
plexes in S. Consider the quotient S/Φ; we require that the quotient map when restricted
to the interior of each face of each simplex is a homeomorphism. We then say that the
quotient S/Φ is a pseudo-manifold.

Thus, we see that a pseudo-manifold is a manifold if and only if the link of each
vertex of the pseudo-manifold is a sphere. Note that as any 3-manifold admits a
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simplicial triangulation, all 3-manifolds are pseudo-manifolds. A pseudo-manifold
is said to be simplicial if it has the structure of a simplicial complex.

Definition 1.1.9 (Singular triangulation of a 3-manifold). Let M be a manifold and
let S/Φ be a pseudo-manifold which is actually a manifold, that is, the link of each vertex
of S/Φ is a sphere. Suppose h : S/Φ → M is a PL homeomorphism. Then, we say that
(S/Φ, Φ, h) is a singular triangulation of M.

Definition 1.1.10 (Derived and barycentric subdivisions). A subdivision of a simpli-
cial complex K is a simplicial complex K′ such that |K| = |K′| and each simplex of K′ is
contained linearly in a simplex of K. The first derived subdivision of a simplicial complex
K is obtained by inductively performing stellar subdivisions on the simplexes of K in the
order of decreasing dimension. Suppose, for each simplex, we choose the barycentre of the
simplex as the interior point at which we perform the stellar subdivision. Then, the derived
subdivision is called a barycentric subdivision. The nth derived or barycentric subdivi-
sion of a simplicial complex is obtained by iteratively performing derived or barycentric
subdivisions on the simplicial complex n times.

Remark 1.1.1. We can easily extend Definition 1.1.10 to singular triangulations and per-
form derived and barycentric subdivisions on them. A singular triangulation can be made
simplicial by performing two derived subdivisions.

Definition 1.1.11 (Ideal and material vertices in a singular triangulation). A vertex
p of a singular triangulation K is said to be material if lk(p, K) is homeomorphic to a 2-
sphere. If lk(p, K) is not homeomorphic to a 2-sphere, then the vertex p is said to be an
ideal vertex.

Definition 1.1.12 (Ideal triangulation). A singular triangulation K in which all vertices
are ideal, such that K is homeomorphic to a manifold M upon removing all the vertices is
called an ideal triangulation of M.

Theorem 1.1.3 (Amendola, Matveev, Piergallini). Two triangulations of a 3-dimensional
pseudo-manifold having the same number of material vertices are related by 2-3 and 3-2
Pachner moves, except triangulations with a single tetrahedron. In particular, ideal trian-
gulations of a 3-dimensional pseudo-manifold (with more than one tetrahedron) are related
by only 2-3 and 3-2 Pachner moves.
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1.1.1 Normal surfaces

We now define and state a few properties about normal surfaces, which are sur-
faces embedded ‘nicely’ with respect to a given triangulation of a 3-manifold. Nor-
mal surfaces are used crucially in the proof of existence and uniqueness of the
prime decomposition and the canonical torus decomposition (JSJ decomposition).
Normal surface theory gives us a framework to study a surface embedded in a
3-manifold using the combinatorial data of the intersection of the surface with the
triangulation of the 3-manifold.

Definition 1.1.13 (Properly embedded surface). A surface S embedded in a 3-manifold
M is said to be properly embedded in M if S ∩ ∂M = ∂S, and the surface intersects the
boundary of M transversely.

Definition 1.1.14 (Normal surface). Let M be a compact 3-manifold with a finite trian-
gulation τ. Let S be a properly embedded compact surface in M which is transverse to the
triangulation τ, that is, S does not intersect the vertices of τ and it intersects edges, faces
and tetrahedra of T only in finitely many components. Note that any properly embedded
compact surface can be perturbed to be transverse to a given triangulation. Then, we say
that S is normal with respect to the triangulation τ if it intersects each tetrahedron only
in triangles which separate one of the vertices of the tetrahedron from the rest, and squares
which separate pairs of disjoint edges in the tetrahedron, as shown in Figure 1.4.

Definition 1.1.15 (Surgering an embedded surface along a disk). Let S be a compact
surface properly embedded in a 3-manifold M. Let D be a disk in M such that D ∩ S =

∂D. Then surgering the surface S along the disk D involves removing an annular tubular
neighbourhood of ∂D in S and capping the resulting surface by adding two parallel copies
of the disk D. This is shown in Figure 1.3. Suppose D ⊂ M is a disk such that ∂D = α∪ β,
where D ∩ S = α and D ∩ ∂M = β. Then, we can also surger S along the disk D in a
similar manner.

Definition 1.1.16 (Elementary transformations). Let M be a compact 3-manifold with
a finite triangulation τ. Let S be a properly embedded compact surface in M which is
transverse to the triangulation τ. Then, an elementary transformation on S is one of the
following moves:

1. We can remove a connected component of S which is contained in a ball.
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Figure 1.3: Surgering S along a disk D where D ∩ S = ∂D

Figure 1.4: Allowed intersections of a normal surface with a tetrahedron in the
triangulation

2. Suppose D ⊂ M is a disk such that D ∩ S = ∂D. Then we can surger S along the
disk D.

3. Suppose D ⊂ M is a disk such that ∂D = α ∪ β, where D ∩ S = α and D ∩ ∂M =

β, then we can surger S along D.

All the elementary transformations are local moves - they occur inside a ball in M. An
elementary transformation changes the surface S into a new surface S′.

The following theorem is a classic theorem on transforming properly embedded
surfaces into normal surfaces and is originally due to Kneser and Haken. [Hat07]
and [Mar16] are good references for the basic theory of normal surfaces.

Theorem 1.1.4. Let M be a 3-manifold with triangulation τ. Let S be a properly em-
bedded surface in M. Then S can be transformed into a surface which is in normal form
with respect to the triangulation τ by a finite sequence of elementary transformations and
isotopies.
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1.2 Cutting 3-manifolds along essential surfaces

To understand the topology and geometry of 3-manifolds, it is often useful to cut
them into simpler pieces which are more easily tractable. For this purpose, 3-
manifolds are cut along certain special surfaces called essential surfaces. We define
a few terms to make this idea more rigorous.

Definition 1.2.1 (∂-parallel surface). A properly embedded surface S in a 3-manifold M
is said to be boundary parallel if it is isotopic to a surface contained in ∂M, where the
isotopy fixes ∂S.

Definition 1.2.2 (Incompressible surface). Let S be a properly embedded surface in a
3-manifold M. A disk D ⊂ M such that D ∩ S = ∂D and ∂D does not bound a disk in
S is said to be a compressing disk for S. Surgering the surface S along the disk is called a
compression. The surface S is said to be incompressible if it does not have any compressing
disk in M.

Definition 1.2.3 (∂-incompressible surface). Let S be a properly embedded surface in a
3-manifold M. We say that a disk D ⊂ M is a ∂-compressing disk for S if ∂D = α ∪ β,
where α ⊂ S and β ⊂ ∂M, such that there is no disk D′ in S with ∂D′ = α ∪ β′, where
β′ ⊂ ∂S. Surgering S along a ∂-compressing disk is called a ∂-compression. The surface S
is called ∂-incompressible if it does not have any ∂-compressing disk in M.

Definition 1.2.4 (Essential surfaces). We assume that all the surfaces under considera-
tion are properly embedded in the 3-manifold M.

• A 2-sphere S embedded in M is said to be an essential sphere if it does not bound a
3-ball in M.

• A disk D in M is called an essential disk if it is not ∂-parallel.

• A torus T embedded in M is said to be essential if it is incompressible and not ∂-
parallel.

• An annulus A embedded in M is said to be essential if it is incompressible, ∂-
incompressible and not ∂-parallel.

In general, any surface S, with χ(S) ≤ 0, which is properly embedded in M is said to be
essential if it is is incompressible, ∂-incompressible and not boundary parallel. A manifold
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M is said to be irreducible, ∂-irreducible, atoroidal, or anannular if it has no essential
sphere, disk, torus, or annulus respectively.

We can thus cut 3-manifolds along various essential surfaces and decompose them
into simpler parts. We state a few classic theorems to this end.

Definition 1.2.5 (Connected sum). Let M1 and M2 be two oriented 3-manifolds. Re-
move 3-balls from the interior of M1 and M2 and denote the resulting manifolds with
boundary as M̂1 and M̂2. Glue M̂1 and M̂2 along the spherical boundary component cor-
responding to the removed ball by an orientation reversing diffeomeorphism. The resulting
manifold is called the connected sum of M1 and M2 and is denoted as M1 # M2.

Definition 1.2.6 (Prime 3-manifold). A 3-manifold M is said to be prime if it cannot be
expressed as a non-trivial connected sum of two other 3-manifolds. Here, we refer to the
connected sum of any 3-manifold M with S3 as a trivial connected sum, as this operation
does not affect M, that is, M # S3 = M.

Clearly any irreducible 3-manifold is prime, while S2 × S1 is the only orientable
prime 3-manifold which is not irreducible. The following classic theorem is due to
Kneser and can be found in [Mil62].

Theorem 1.2.1 (Prime decomposition). Any compact orientable 3-manifold M decom-
poses as the connected sum of prime 3-manifolds

M = M1 # M2 # .... # Mk

The Mi are unique up to ordering and insertion and deletion of copies of S3.

We can also further decompose irreducible manifolds by cutting along essential
disks. This theorem can be found in [Mil62] and a stronger result can be found in
[Gro69].

Theorem 1.2.2 (Decomposition along essential disks). Any compact, orientable, irre-
ducible 3-manifold M can be cut along a system of non-parallel essential disks to obtain
irreducible and ∂-irreducible manifolds M1,..., Mk. This decomposition is unique up to
permutation of the Mi and adding or removing balls.

Now, given a compact, irreducible, ∂-irreducible 3-manifold M, Jaco-Shalen and
Johannson showed that it can be further decomposed along essential tori into
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atoroidal pieces [JS79]. The uniqueness part of this theorem is tricky and involves
understanding the theory of Seifert-fibered manifolds, so we state only the exis-
tence part.

Theorem 1.2.3 (JSJ decomposition - existence). Let M be a compact, irreducible, ∂-
irreducible 3-manifold. Then, there exists a system of non-parallel essential torii in M
such that cutting along these tori decomposes M into atoroidal pieces M1,..., Mk.

All the decomposition theorems stated above are proved by transforming the es-
sential surfaces under consideration into normal surfaces and by using the combi-
natorial structure of these normal surfaces.

1.3 Geometrization of 3-manifolds

We have described how 3-manifolds can be cut along essential surfaces into sim-
pler pieces. Thurston conjectured that every 3-manifold M possesses a geomet-
ric decomposition, which is obtained in a similar way by cutting along essential
spheres, disks and tori, and that each of the resulting pieces of the geometric de-
composition admits one of eight geometries. We shall describe this idea in more
detail in this section, and explain a few of its consequences. We shall however skip
some technical details in the exposition.

Definition 1.3.1. A connected Riemannian manifold M is said to be homogeneous if for
any two points p and q in M, there exists an isometry f of M such that f (p) = q.

Definition 1.3.2. We say that a Riemannian manifold M has a geometric structure mod-
elled on a model geometry N if M is locally isometric to N.

Thurston’s eight model geometries are all complete, simply connected and ho-
mogeneous Riemannian manifolds. The eight geometries are S3, R3, H3, S2 ×R,
H2×R, Nil, Sol and S̃L2. Out of these, the first three geometries are the ones with
constant sectional curvature. Of the eight geometries, all but Sol and H3 are Seifert
fibered. We will study hyperbolic geometry in more detail in the following chap-
ters. We now state the geometrization theorem, which was proved by Thurston for
Haken manifolds, and proved in general by Perelman using Hamilton’s Ricci flow.

Theorem 1.3.1 (Thurston’s geometrization theorem). Every 3-manifold admits a geo-
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metric decomposition by cutting along essential spheres, disks and tori. Each of the pieces of
the geometric decomposition admits a complete finite volume geometric structure modelled
on one of Thurston’s eight geometries.

Each of the model geometries has a specific characterization in terms of the es-
sential surfaces it allows and its fundamental group which enables it to be distin-
guished from the others easily. We shall now state a few consequences of Thurston’s
geometrization theorem which will prove useful for us in later chapters.

Corollary 1.3.1.1 (Hyperbolization). A compact 3-manifold M with torus boundary
components has an interior admitting a complete hyperbolic metric (a complete geometric
structure modelled on H3) of finite volume if and only if M is irreducible, ∂-irreducible,
atoroidal and anannular.

Thurston also used the geometrization theorem to prove a classification of knots
based on the structure of their complements. We first define the different kinds of
knots which appear in this classification.

Definition 1.3.3. Embed a torus T in S3 as the boundary of a tubular neighbourhood of an
unknot. There are two compressing disks for T which are on opposite sides of the torus in
S3. Both these disks intersect T only in their boundary circles, which are non-trivial simple
closed curves on T by construction. We shall choose one of these to be the meridian m of T
and the other to be the longitude l of T. We let m and l be the generators for the homology
H1(T; Z). Let p and q be coprime integers. Then a simple closed curve on T from the class
(p, q) = pm + ql ∈ H1(T; Z) is an oriented knot in S3, with the orientation determined
by the signs of p and q. This is called the (p, q)-torus knot and is denoted by T(p, q).

The complement of a torus knot contains an essential annulus and does not contain
any essential tori.

Definition 1.3.4 (Satellite knot). Consider a knot K′ in a solid torus V such that K′ is
not contained in a 3-ball in V and K′ is not isotopic to the core of V. Let K′′ be a non-trivial
knot in S3. Drill out a regular neighbourhood of K′′ from S3 and fill the hole with the solid
torus V with K′′ embedded in it without twisting, that is, glue V such that the meridian
curve of K′′ still bounds a disk in V. The embedding of K′ we get from this procedure is
called a satellite knot. The knot K′′ is called the companion of the satellite knot. Thus,
the satellite knot obtained through this construction lies in a regular neighbourhood of the
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companion knot.

The complement of a satellite knot contains an essential torus, the boundary of V.

Definition 1.3.5 (Hyperbolic knot). A knot is said to be hyperbolic if its complement
admits a complete hyperbolic metric, that is, the complement admits a complete geometric
structure modelled on H3.

From the hyperbolization theorem, we see that the complement of a hyperbolic
knot does not contain any essential tori or annuli.

Corollary 1.3.1.2 (Classification of knots). Any knot K : S1 → S3 is either a torus knot,
a satellite knot, or a hyperbolic knot. These three classes are mutually exclusive.

Torus knots are well understood and many of their invariants have been explicitly
calculated. The complement of torus knots are Seifert fiber spaces, which are well
understood. Hyperbolic knots are abundant among the three classes and the hy-
perbolic structure on a hyperbolic knot complement is a complete invariant of the
knot due to Mostow-Prasad rigidity (Theorem 2.3.1) and Gordon-Luecke theorem
(Theorem 2.3.2). Thus, geometric invariants of hyperbolic knot complements are
knot invariants. So, finding and studying invariants of the hyperbolic structure
on hyperbolic knot complements can help us to completely distinguish between
hyperbolic knots. In the rest of this thesis, we will be restricting our attention to
hyperbolic 3-manifolds.



Chapter 2

Basic hyperbolic geometry

In this chapter, we describe a few basic results in hyperbolic geometry that will
aid us in our study of geometric triangulations of hyperbolic manifolds. We will
describe different models of hyperbolic space and understand the classification
of isometries of hyperbolic space in dimensions 2 and 3. We shall also state the
Mostow-Prasad rigidity theorem and understand its consequences.

2.1 Models of hyperbolic space

In this section, we shall describe the various models of hyperbolic space that we
will need in later chapters. We will try to understand the metric on these spaces,
the geodesics in these models and the boundary of the hyperbolic space in these
models.

2.1.1 The upper half space model

In this model of hyperbolic space, which we denote by Hn, the underlying set is
given by

Hn = {x ∈ Rn | xn > 0}

The metric on this space is given by

ds2 =
‖dx‖2

x2
n

17
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We find that the geodesics in Hn induced by this metric are semicircular arcs and
vertical lines perpendicular to the xn = 0 hyperplane. The boundary of hyperbolic
space in this model consists of the xn = 0 hyperplane and the point at ∞.

∂Hn = {x ∈ Rn | xn = 0} ∪ {∞}

2.1.2 The Poincare disk model

The underlying set for this model of hyperbolic space, which we shall denote as
Dn, is the unit disk in n-dimensions.

Dn = {x ∈ Rn | ‖x‖ < 1}

Here we have used the symbol ‖.‖ to denote the usual Eulcidean norm in Rn. The
metric on the Poincare disk is

ds2 =
4‖dx‖2

(1− ‖x‖2)2

The geodesics in this model are the diameters of the disk and circular arcs which
are perpendicular to the boundary of the disk. The boundary of hyperbolic space
in this model is clear - it is simply the boundary of the disk.

∂Dn = {x ∈ Rn | ‖x‖ = 1}

Remark 2.1.1. Both the upper half space model and the Poincare disk model are conformal
models of hyperbolic space, that is, the hyperbolic angle between two curves is the same as
the Euclidean angle between the representations of the two curves in these models.

2.1.3 The hyperboloid model

The underlying set for this model of hyperbolic space is the upper sheet of the
n-dimensional hyperboloid, which we denote as Ln.

Ln = {x ∈ Rn+1 | x2
1 + x2

2 + ... + x2
n − x2

n+1 = −1, xn+1 > 0}

The metric in the hyperboloid model is given by
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ds2 = dx2
1 + ... + dx2

n − dx2
n+1

This metric is actually the metric induced by the Minkowksi inner product on
Rn+1, which is given by

〈x, y〉 = x1y1 + ... + xnyn − xn+1yn+1

The Minkowski inner product gives a Riemannian metric on the hyperboloid since
the inner product is positive definite when restricted to the tangent space at any
point on the upper sheet of the hyperboloid.

The geodesics in the hyperboloid model are given by the intersection of two di-
mensional subspaces of Rn+1 with the hyperboloid Ln. The boundary of hyper-
bolic space is represented by rays on the light cone.

∂Ln = {x ∈ Rn+1 | 〈x, x〉 = 0}/x ∼ λx, λ ∈ R, λ > 0

2.1.4 The Klein model

The underlying set of the Klein model of hyperbolic space, which we denote as
Kn, is also the unit disc in Rn.

Kn = {x ∈ Rn | ‖x‖ < 1}

However, the metric is different and is given by

ds2 =
‖dx‖2

1− ‖x‖2 +
(x1dx1 + ... + xndxn)2

(1− ‖x‖2)2

The Klein model is obtained from the hyperboloid model by radial projection to
the unit disk in the xn+1 = 0 hyperplane and the metric is induced by pullback
from the metric on Ln.

The geodesics in the Klein model are the Euclidean straight lines in the disk. The
boundary of the Klein model is the usual topological boundary of the unit disk.

Remark 2.1.2. Both the hyperboloid and the Klein model are not conformal models of hy-
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perbolic space.

Remark 2.1.3. All the models of hyperbolic space are isometric to each other. The isome-
tries take the geodesics in one model to corresponding geodesics in the other model.

2.2 Isometries of hyperbolic space

2.2.1 Classification of isometries of H2

If we view the hyperbolic plane in the upper half plane model, we see that trans-
formations of the form z 7→ az+b

cz+d , where a, b, c, d ∈ R and ad− bc = 1 are isometries
of the hyperbolic plane. These are known as real Mobius transformations, and the
group of such transformations is isomorphic to the group PSL(2, R). In fact, these
are all the orientation preserving isometries of H2. We shall classify the orientation
preserving isometries of H2 on the basis of the number of their fixed points and
their trace. Note that the trace of the isometry is defined only up to sign.

Proposition 2.2.1. The group of orientation preserving isometries of H2 is isomorphic to
PSL(2, R). Any isometry A can be classified on the basis of its fixed points and its trace.

1. If tr(A) = ±2, then A fixes only one point on ∂H2 and no points in H2. Such an
isometry is called a parabolic isometry and is conjugate to z 7→ z + 1 in the upper
half plane model.

2. If tr(A) ∈ (−2, 2), then A will not fix any point on ∂H2 and fixes one point in the
interior of H2. Such an isometry is called an elliptic isometry and in the Poincare
disk model, it is conjugate to z 7→ e2iθz, where 2θ 6= 2nπ, ∀n ∈N.

3. If tr(A) /∈ [−2, 2], then A fixes two points on ∂H2, leaving the geodesic joining
these two points invariant. It does not fix any point in H2. Such an isometry is
called a loxodromic isometry and is conjugate to z 7→ ρ2z, where ρ ∈ R and ρ > 1.

2.2.2 Classification of isometries of H3

Each orientation preserving isometry of H3 is an extension of a Mobius transfor-
mation from ∂H3 = C∪∞ to the interior of hyperbolic space. We describe how to
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extend Mobius transformations on ∂H3 to isometries of H3. Given a Mobius trans-
formation T, let T̂ be the corresponding isometry of H3. Consider a point x ∈ H3

- it can be obtained as the intersection of two geodesics l and m in H3. Let p and
q be the endpoints of the geodesic l and r and s be the endpoints of the geodesic
m. Then, suppose the Mobius transformation T takes the endpoints p, q, r and s
to the points p′, q′, r′ and s′ on ∂H3 respectively. We define T̂ such that it takes
the geodesics l and m to the geodesics l′ and m′ which have their endpoints at p′,
q′, r′ and s′ respectively. Then, we define T̂(x) = y, where y ∈ H3 is the point at
which l′ and m′ intersect. This definition of T̂ is independent of the choice of the
geodesics l and m, that is, T̂ is well defined.

Isometries of H3 can be classified by the number of points they fix on the boundary
∂H3.

Proposition 2.2.2. Any orientation preserving isometry of H3 is an extension of a Mo-
bius transformation of the form z 7→ az+b

cz+d , where a, b, c, d ∈ C and ad − bc = 1. The
group of orientation preserving isometries of H3 is thus isomorphic to the group of Mobius
transformations, which is isomorphic to PSL(2, C). Any orientation preserving isometry
A thus has a representation as a matrix in PSL(2, C) and can be classified by the number
of points it fixes and its trace.

1. If tr(A) = ±2, then A fixes only one point on ∂H3 and no points in H3. Such an
isometry is called a parabolic isometry and is conjugate to z 7→ z + 1.

2. If tr(A) ∈ (−2, 2), then A fixes two points on ∂H3 and the geodesic joining these
two points. Such an isometry is called an elliptic isometry and is conjugate to z 7→
e2iθz, where 2θ 6= 2nπ, ∀n ∈N.

3. If tr(A) /∈ [−2, 2], then A fixes two points on ∂H3, leaving the geodesic joining
these two points invariant. It does not fix any point in H3. Such an isometry is
called a loxodromic isometry and is conjugate to z 7→ ρ2z, where ρ ∈ C and |ρ| > 1.

2.3 Mostow-Prasad rigidity

Mostow-Prasad rigidity theorem restricts the possible complete hyperbolic struc-
tures on a finite volume hyperbolic manifold of dimensions greater than two.
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Mostow had proved the theorem for finite volume closed hyperbolic manifolds
and Prasad extended it for the case of finite volume cusped hyperbolic manifolds.
As a consequence of the thick-thin decomposition (Theorem 3.4.1), we will see that
all finite volume hyperbolic 3-manifolds are either closed or have finitely many
cusps .

Theorem 2.3.1 (Mostow-Prasad rigidity). Let M1 and M2 be complete finite volume
hyperbolic n-manifolds, where n ≥ 3. Then any isomorphism between the fundamental
groups of M1 and M2 is realised by a unique isometry between M1 and M2. Thus, any
complete finite volume hyperbolic manifold of dimension n ≥ 3 has a unique complete
hyperbolic structure up to isometry.

Thus, any invariant of the complete hyperbolic structure on a complete finite vol-
ume hyperbolic 3-manifold is also a topological invariant of the 3-manifold. This
gives rise to a rich variety of geometric invariants such as hyperbolic volume, cusp
shape, maximal cusp volume, length spectrum of geodesics, etc.

Hyperbolic geometry is intimately related with knot theory. This is because the
Gordon-Luecke theorem states that knots are determined by knot complements.

Theorem 2.3.2 (Gordon-Luecke theorem). Two knots K1 and K2 are isotopic if and only
if their complements in the 3-sphere S3 \ K1 and S3 \ K2 are homeomorphic. Furthermore,
they are ambient isotopic if and only if S3 \ K1 and S3 \ K2 are homeomorphic via an
orientation preserving homeomorphism.

Combining the Mostow-Prasad rigidity theorem and the Gordon-Luecke theorem,
we see that the geometry of a hyperbolic knot complement is actually a complete
invariant of the knot. Thus, the geometric invariants mentioned above are knot
invariants for the class of hyperbolic knots. Studying the rich interplay between
the combinatorics of hyperbolic knot diagrams and the topology and the geome-
try of the knot complements has been an active area of research in recent years.
The main focus has been on relating diagrammatic invariants of hyperbolic knots
with the geometric invariants of the knot complements. The volume conjecture by
Kashaev and Murakami [MY18] is one such attempt which tries to relate the Col-
ored Jones polynomial of hyperbolic knots with the hyperbolic volume of the knot
complements.



Chapter 3

Margulis lemma and the thick-thin
decomposition

3.1 Introduction

A complete hyperbolic manifold M is the quotient of H3 by a subgroup of isome-
tries Γ < PSL(2, C). This is because M has a hyperbolic structure and the holon-
omy group acts on H3 (which is the universal cover of M) by deck transformations
as M is complete. We shall see that the subgroup Γ must be discrete for M to be a
complete hyperbolic manifold. So, we would like to study discrete subgroups of
PSL(2, C), which are called Kleinian groups, to understand the structure of com-
plete hyperbolic 3-manifolds. In most of this chapter, we will follow the exposition
by Purcell [Pur20]. Marden’s book [Mar07] also contains an excellent treatment of
Kleinian groups. We have also referred to the excellent book by Benedetti and
Petronio [BP12] for the proof of the thick-thin decomposition.

3.2 Kleinian groups

Definition 3.2.1 (Kleinian group). A subgroup G of PSL(2, C) is said to be discrete if it
does not contain any sequence of distinct elements converging to the identity in PSL(2, C).
Discrete subgroups of PSL(2, C) are called Kleinian groups.

Lemma 3.2.1. The following are equivalent:

• A subgroup G of PSL(2, C) is discrete

23
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• G does not contain any sequence of distinct elements An converging to an element
A in PSL(2, C).

We shall now state a technical lemma about sequences of elements of PSL(2, C)

which will be useful later in the chapter.

Lemma 3.2.2. Let Tn be a sequence in PSL(2, C). Then either one of the following must
be true:

1. Tn contains a subsequence which converges to some element T ∈ PSL(2, C)

2. There exists a point p ∈ ∂H3, such that given any x ∈H3, Tn(x) has a subsequence
which converges to p.

We will now see that the holonomy group Γ of a complete hyperbolic manifold is
discrete by considering its action on H3. We first define a few terms to describe the
actions of subgroups of PSL(2, C) on H3.

Definition 3.2.2 (Properly discontinuous action). The actions of a subgroup Γ ≤ PSL(2, C)

on H3 is said to be properly discontinuous if for any closed ball B ⊂ H3, the set {γ ∈ Γ |
γB ∩ B 6= ∅} is a finite set.

Definition 3.2.3 (Free action). The actions of a subgroup Γ ≤ PSL(2, C) on H3 is said
to be free if no element of Γ other than the identity has a fixed point in H3.

Among all isometries of H3, only the elliptics have fixed points in H3; the parabol-
ics and the loxodromics only fix points on the boundary ∂H3. So, the action of
a subgroup Γ on H3 is free if and only if it contains no elliptics. We now de-
scribe a condition which is equivalent to the discreteness of the holonomy sub-
group Γ ≤ PSL(2, C).

Proposition 3.2.1. A subgroup Γ of PSL(2, C) is discrete if and only if its action on H3

is properly discontinuous.

Theorem 3.2.1. The action of a group Γ ≤ PSL(2, C) on H3 is free and properly discon-
tinuous if and only if H3/Γ is a complete hyperbolic manifold and the quotient map from
H3 7→H3/Γ is a covering projection.
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3.3 Elementary groups

In what follows, we shall assume that Γ is a discrete subgroup of PSL(2, C) without
elliptics, as only then is the quotient H3/Γ a complete hyperbolic manifold, by
Theorem 3.2.1. To understand the structure of complete hyperbolic 3-manifolds
by studying their holonomy groups, we shall consider subgroups of PSL(2, C)

generated by a small number of generators and understand their properties.

Definition 3.3.1 (Elementary groups). Let Γ be a Kleinian group without elliptics and
let S be the set consisting of the union of the fixed points on ∂H3 of all its non-identity
elements. Then we say that Γ is elementary if |S| ≤ 2.

We now prove a few properties of elementary subgroups.

Proposition 3.3.1. Let Γ be a non-trivial elementary Kleinian group without elliptics.
Then, either of the following must be true:

1. The set S consists of a single point on ∂H3. Then Γ is generated by one or two
parabolics which fix the same point on ∂H3 and is isomorphic to either Z or Z×Z.

2. The set S consists of two points on ∂H3. Then Γ is generated by a single loxodromic
which leaves the geodesic joining the two points invariant. In this case, Γ is isomor-
phic to Z.

Proof. Suppose the set S consists of exactly one point on ∂H3. We can conjugate
Γ so that the fixed point is ∞ on ∂H3. Then, Γ can contain only parabolics which
fix ∞ ∈ ∂H3. The parabolics in Γ act as Euclidean translations on any horosphere
about ∞. As Γ is discrete, the group of these Euclidean translations must be gen-
erated by either one or two linearly independent translations, that is, Γ must be
generated by one or two independent parabolics fixing ∞. If Γ is generated by one
parabolic fixing ∞, then Γ ∼= Z, and if Γ is generated by two independent parabol-
ics fixing ∞, then Γ ∼= Z×Z.

Now suppose the set S consists of two points on ∂H3. We can conjugate Γ so that
the fixed points are 0 and ∞. Now, we claim that Γ cannot consist only of parabol-
ics. Suppose A is a parabolic fixing 0 and B is a parabolic fixing ∞, then the product
AB belongs to Γ and fixes neither 0 nor ∞. Also AB cannot be the identity element,
as A 6= B−1. This contradicts the fact that the union of the fixed points on ∂H3 of
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all the non-identity elements of Γ consists of only 0 and ∞. Thus, Γ must contain a
loxodromic element L which fixes the points 0 and ∞ and leaves the axis joining 0
and ∞ invariant. Now, we claim that Γ cannot contain any parabolic elements. As-
sume without loss of generality that Γ contains a parabolic element P which fixes
0. Then, from the proof of the second claim of Proposition 3.3.2, we see that the
group generated by P and L is not discrete, contradicting the fact that Γ is discrete.

Thus, Γ consists only of loxodromics which fix 0 and ∞ and leave the axis joining 0
and ∞ invariant. Each loxodromic γ in Γ has a translation distance along the axis,
which is the distance d(x, γ(x)), where x is a point on the axis. As Γ is discrete
and non-trivial, the minimum translation distance of all the non-identity elements
of Γ exists and is non-zero. Let d be the minimum translation distance and A be
an element in Γ corresponding to it. Then, we claim that Γ is generated by A,
that is Γ = 〈A〉. We first show that the translation distance of any other non-
identity element C in Γ is a multiple of d. Suppose this is not true, then we see
that the translation distance of C must lie strictly between nd and (n + 1)d for
some n ∈ N. Then, CA−n ∈ Γ will have a translation distance strictly less than d,
which is a contradiction. Now, we show that any element C in Γ is generated by
A. Suppose the translation distance of C is nd, for some n ∈ N, then CA−n has
translation distance 0, which means that CA−n fixes each point on the axis, and
hence must be the identity element of Γ, as Γ contains no elliptics. Hence, C = An,
and Γ = 〈A〉 ∼= Z.

We also need to understand the structure of non-elementary Kleinian groups with-
out elliptics. So, we will state the following key proposition:

Proposition 3.3.2. Let Γ be a non-elementary Kleinian group without elliptics. Then, Γ
satisfies the following properties:

1. Γ is infinite

2. Given a loxodromic element A ∈ Γ, there does not exist another non-trivial element
B ∈ Γ such that B shares exactly one fixed point on ∂H3 with A.

3. Given a non-trivial element C ∈ Γ, there exists a loxodromic element D ∈ Γ which
does not share any fixed point on ∂H3 with C.

4. Γ contains two loxodromics with no shared fixed points.
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Proof.

1. As Γ is a non-elementary Kleinian group without elliptics, it must contain a
parabolic or a loxodromic element, both of which have infinite order. Hence,
Γ is infinite.

2. Suppose there exists a non-trivial element B ∈ Γ such that it shares exactly
one fixed point in common with the loxodromic A. We shall show that the
group generated by A and B is not discrete. We can conjugate the group Γ
such that A is of the form

(
ρ 0
0 ρ−1

)
, where |ρ| < 1. As B shares exactly one

fixed point with A, B is of the form
(

a b
0 a−1

)
. Then,

AnBA−nB−1 =

(
1 ab(ρ2n − 1)
0 1

)

Letting n → ∞, we see that AnBA−nB−1 converges to the parabolic
(

1 −ab
0 1

)
.

From Lemma 3.2.1, we see that the group generated by A and B cannot be
discrete, as it contains a sequence of distinct elements converging to an ele-
ment of PSL(2, C). This contradicts the fact that Γ is discrete, so there cannot
exist a non-trivial element B ∈ Γ such that it shares exactly one fixed point in
common with the loxodromic A.

3. There are two cases depending on whether C is a parabolic or a loxodromic.
First, suppose C is a parabolic element. Then, we can conjugate Γ so that
C fixes ∞ and assume that C =

(
1 1
0 1

)
. As Γ is a non-elementary subgroup,

there has to be another element F ∈ Γ such that F fixes a point x ∈ ∂H3,
where x 6= ∞. Suppose F is a loxodromic, it cannot fix ∞ by part 2 of this
proposition, so F is the required loxodromic D. If F is a parabolic, we see that
F is of the form

(
a b
c d

)
, where c 6= 0, as F does not fix ∞. It is clear that CnF

cannot fix ∞ for any n ∈N. The trace of CnF is given by

tr(CnF) = a + nc + d = nc± 2

For large enough n, we see that tr(CnF) /∈ [−2, 2], so D = CnF ∈ Γ is the
required loxodromic.
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Now, assume C is loxodromic. Again, we can conjugate Γ so that C fixes 0
and ∞ and assume that C =

(
ρ 0
0 ρ−1

)
, where |ρ| > 1. As Γ is a discrete non-

elementary group, from part 2 of this proposition we see that there exists an
element F ∈ Γ such that F fixes neither 0 nor ∞. If F is a loxodromic, then
we see that it is the required loxodromic D. If F is a parabolic, then again we
consider CnF and show that it is a loxodromic for sufficiently large n. We can
assume that F =

(
a b
c d

)
, where c 6= 0, and a + d = ±2. Then, we see that CnF

cannot fix 0 or ∞, and tr(CnF) = aρn + dρ−n. For large enough n, we see that
tr(CnF) /∈ [−2, 2], so D = CnF ∈ Γ is the required loxodromic.

4. Consider a non-trivial element A ∈ Γ. By using part 3 of this proposition, we
see that there exists a loxodromic B which shares no fixed points in common
with A. If A is a loxodromic, then we are done. If not, we can apply part 3
of the proposition to B to obtain another loxodromic C which shares no fixed
points in common with B. Hence, Γ must contain two loxodromics which
have no common fixed points.

We will also need the following theorem on the convergence of non-elementary
Kleinian groups. We state a corollary of the original version proved by Jorgensen
and Klein [JK82], the proof of which can be found in [Mar07]. This theorem will be
used in a crucial way in the proof of the Margulis lemma.

Theorem 3.3.1. Suppose {〈An, Bn〉} is a sequence of non-elementary Kleinian groups
without elliptics. Let An converge to A and Bn converge to B in PSL(2, C). Then, A 6= B,
and 〈A, B〉 is a non-elementary Kleinian group. Also, A and B share a fixed point if and
only if An and Bn share a fixed point for all sufficiently large n.

3.4 Margulis lemma and the thick-thin decomposition

We will now use the facts which we stated in previous sections to understand the
Margulis lemma, which is a strong result on the structure of complete hyperbolic
3-manifolds. To state the result, we must first define a few terms.
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Definition 3.4.1 (Rank 1 cusps, Rank 2 cusps and tubes around closed geodesics).
Let Γ be an elementary Kleinian group without elliptics. Then depending on the structure
of Γ elaborated in Proposition 3.3.1, we have the corresponding geometric pieces.

• Suppose Γ fixes only one point on ∂H3. We can conjugate Γ so that the fixed point
is at ∞. Let H be the closed horoball about ∞ at height 1 in H3. That is,

H = {(x, y, t) | t ≥ 1}

Then, we know from Proposition 3.3.1 that Γ is generated either by one or two
parabolics which fix ∞. Suppose Γ is generated by one parabolic fixing ∞, then the
quotient of the horball H/Γ is homeomorphic to A× [0, ∞), where A is an annulus.
In this case, we say that H/Γ is a rank 1 cusp. If Γ is generated by two parabol-
ics fixing ∞, then the quotient of the horoball H/Γ is homeomorphic to T × [0, ∞),
where T is a torus. In this case, we say that H/Γ is a rank 2 cusp.

• Suppose Γ fixes two points on ∂H3. We can conjugate Γ so that these two points
are 0 and ∞. Then, by Proposition 3.3.1, we know that Γ is generated by a single
loxodromic which leaves the geodesic from 0 to ∞ invariant. Let Cr be the closed solid
cylinder of hyperbolic radius r around the geodesic from 0 to ∞. Then the quotient
Cr/Γ is homeomorphic to a solid torus. We say that Cr/Γ is a tube of radius r around
the core geodesic of the solid torus.

Of these, rank 1 cusps have infinite volume while rank 2 cusps and tubes of radius
r around geodesics are of finite volume.

The Margulis lemma gives us a decomposition of a complete hyperbolic manifold
into a thick and a thin part which are defined in terms of injectivity radius. So, we
shall next define these terms precisely.

Definition 3.4.2 (Injectivity radius). Let M be a complete hyperbolic manifold and let
x ∈ M. Then the injectivity radius at x, denoted as injrad(x) is the supremal radius r for
which a ball of radius r around x in M is embedded.

Definition 3.4.3 (Thick and thin part). Let M be a complete hyperbolic 3-manifold. For
ε > 0, we define the ε-thin part of M, denoted by M<ε, by

M<ε = {x ∈ M | injrad(x) < ε/2}
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We define the ε-thick part of M to be the complement of the ε-thin part of M.

We are now in a position to state Margulis’ thick-thin decomposition for complete
hyperbolic 3-manifolds.

Theorem 3.4.1 (Thick-thin decomposition). There exists a universal constant ε3, such
that for any complete, orientable, hyperbolic 3-manifold M, if 0 < ε ≤ ε3, then the ε-thin
part of M consists of rank 1 cusps, rank 2 cusps and tubes around short geodesics of length
at most ε.

Remark 3.4.1. Any number ε > 0 for which the ε-thin part of M decomposes as per the
conclusion of the thick-thin decomposition is called a Margulis number for M.

The supremum of all constants ε3 for which the conclusion of Theorem 3.4.1 holds
is called the Margulis constant, and we denote it as ε3. Currently, the best lower
bound for ε3 is 0.104, which is due to Meyerhoff [Mey87] and the best upper bound
is 0.616 which is due to Weeks [Wee05].

The thick-thin decomposition for complete hyperbolic 3-manifolds follows from
the Margulis lemma, which is actually a very general theorem about discrete groups
acting on symmetric spaces. However, we shall use a restricted version which ap-
plies to Kleinian groups. The form of the Margulis lemma we are going to prove
is due to Jorgensen and Marden and its proof is given in Marden’s book [Mar07].
This version in fact holds for Kleinian groups with elliptics also, but we shall only
state it for Kleinian groups without elliptics.

First, we establish some notation. Given a Kleinian group Γ, a point x ∈H3, and a
distance r, let Γ(x, r) denote the set

Γ(x, r) = {T ∈ Γ | d(x, Tx) < r}

where d(x, y) refers to the hyperbolic distance between the points x and y. Let
〈Γ(x, r)〉 denote the subgroup of Γ generated by Γ(x, r). The Margulis lemma can
then be stated as below.

Theorem 3.4.2 (Universal elementary neighbourhoods). There exists a universal con-
stant ε3 > 0, such that for all x ∈ H3 and for any Kleinian group Γ without elliptics, the
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subgroup 〈Γ(x, ε3)〉 is elementary.

Proof. We first show that for a fixed x ∈H3, and for a fixed Kleinian group Γ with-
out elliptics, there exists an r > 0, such that 〈Γ(x, r)〉 is elementary. Suppose this
is not true, then for a sequence rn → 0, 〈Γ(x, rn)〉 will be non-elementary for each
n ∈ N. Thus, we will obtain a sequence of distinct Tn ∈ Γ(x, rn) such that the dis-
tance d(x, Tnx) < rn. Then, by Lemma 3.2.2, we see that the sequence Tn converges
to an element T ∈ PSL(2, C). Using Lemma 3.2.1, we see that this contradicts the
fact that Γ is discrete. So, there exists a sufficiently small r > 0 such that 〈Γ(x, r)〉
is elementary.

We will show that there exists a fixed r > 0 such that the above result is true for any
x ∈H3 and for any Kleinian group Γ ≤ PSL(2, C), and this will prove the theorem.
Suppose this is not true, then there must exists a sequence of points xn ∈H3, a se-
quence of distances rn ∈ R>0, and a sequence of Kleinian groups Γn ≤ PSL(2, C),
such that 〈Γn(xn, rn)〉 is not elementary. We first simplify the proof by conjugating
all these groups to replace the different xn’s with a fixed x ∈ H3. For each xn,
let Tn be an element of PSL(2, C) such that Tn(xn) = x, for some fixed x ∈ H3.
Then, we can conjugate the sequence of Kleinian groups Γn by Tn to work with
a fixed x ∈ H3. As 〈Γn(xn, rn)〉 ≤ Γn is a non-elementary subgroup, we see that
Tn〈Γn(xn, rn)〉T−1

n ≤ TnΓnT−1
n is also a non-elementary subgroup. So, if we de-

note TnΓnT−1
n as Gn, then 〈Gn(x, rn)〉 = Tn〈Γn(xn, rn)〉T−1

n . So, we shall henceforth
work with the sequence of Kleinian groups Gn and the non-elementary subgroups
〈Gn(x, rn)〉.

We shall now try and obtain elements An and Bn in Gn(x, rn), such that the sub-
group 〈An, Bn〉 is non-elementary. As 〈Gn(x, rn)〉 is non-elementary, we claim that
the generating set Gn(x, rn) must contain at least two elements An and Bn which
do not have any fixed points in common. As the subgroup 〈Gn(x, rn)〉 is non-
elementary, in particular, it is non-trivial, and hence Gn(x, rn) must contain a non-
trivial element An. Whether An is parabolic or loxodromic, since 〈Gn(x, rn)〉 fixes
more than two points on ∂H3, the generating set Gn(x, rn) must consist of an ele-
ment Bn which fixes a point other than the ones fixed by An. Note that Bn cannot
be a loxodromic element which shares one of its fixed points with An, as then the
subgroup 〈An, Bn〉 would not be discrete, due to the proof of the second part of
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Proposition 3.3.2. So, either Bn is a parabolic which fixes a point not fixed by An,
or Bn is a loxodromic which shares no fixed point in common with An. Thus the
subgroup 〈An, Bn〉 is not elementary.

As n → ∞, rn → 0, and since d(x, An(x)) < rn and d(x, Bn(x)) < rn, we see that
An(x) → x, and Bn(x) → x. So from Lemma 3.2.2, we see that there are sub-
sequences of {An} and {Bn} which converge to elements A and B in PSL(2, C).
Then, from Theorem 3.3.1, we see that 〈A, B〉 is also non-elementary. As An and Bn

do not have common fixed points for all n ∈ N, A and B cannot share any fixed
points in common, due to Theorem 3.3.1.

However, as An, Bn ∈ Gn(x, rn), and rn → 0, we see that An(x) → A(x) = x, and
similarly B(x) = x. This contradicts the previous assertion that A and B do not
share common fixed points. This contradiction proves our theorem.

The proof of the thick-thin decomposition using the Margulis lemma uses a rela-
tion between the translation distance of isometries and the injectivity radius. This
relation is given in the following lemma.

Lemma 3.4.1. Let M be a complete, orientable, hyperbolic 3-manifold and let Γ be its
holonomy group, that is M ∼= H3/Γ. Consider x ∈ M with a lift x̃ in H3. Then, we have

injrad(x) =
1
2

inf
T 6=id∈Γ

{d(x̃, Tx̃)} (3.1)

Proof. The ball B(x, r) is embedded in M if and only if B(x̃, r) is disjoint from all
the Γ-translates A(B(x̃, r)) = B(Ax̃, r), for all A ∈ Γ, as H3 → H3/Γ = M is a
covering projection. The ball B(x̃, r) is disjoint from all the Γ-translates B(Ax̃, r)
if and only if d(x̃, Ax̃) ≥ 2r for all A ∈ Γ. Thus, the supremal radius r for which
B(x, r) is embedded in M is equal to the infimum of the values 1

2 d(x̃, Ax̃), where
we vary over all A ∈ Γ. Hence, we have proved the required relation.

We are now in a position to prove Margulis’ thick-thin decomposition for complete
hyperbolic 3-manifolds. This proof is borrowed from the book by Benedetti and
Petronio [BP12].
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Proof. Let x ∈ M, and let π : H3 → H3/Γ = M be the covering projection. From
the Margulis lemma (Theorem 3.4.2), we see that the subgroup 〈Γ(ε, x)〉 is elemen-
tary for any ε < ε3, where ε3 is the Margulis constant. In the rest of this proof,
we denote 〈Γ(ε, x)〉 by Γε. From Proposition 3.3.1, it is clear that Γε is either gen-
erated by one or two independent parabolics which fix the same point on ∂H3, or
it is generated by a single loxodromic element which fixes two points on ∂H3 and
leaves the geodesic axis joining these two points invariant.

Let us first suppose that Γε is either generated by one or two independent parabol-
ics which fix the same point on ∂H3. We can conjugate the group Γ to ensure that
this fixed point is ∞ ∈ ∂H3. Let Γ∞ be the subgroup of Γ consisting of all the
parabolics in Γ which fix ∞. As Γ is discrete, we see that Γ∞ must be generated by
one or two independent parabolics fixing ∞. We shall consider the set

L̃ = {ỹ ∈H3 | ∃A ∈ Γ∞, A 6= id such that d(ỹ, Aỹ) ≤ ε}

From the description of L̃, it is clear that L̃ is a horoball about ∞ in H3. As Γε ≤ Γ∞,
we see that x̃ ∈ L̃, and hence x ∈ π(L̃). We shall consider the projection π(L̃) ⊂ M
and show that it is either a rank one or a rank two cusp. It is clear that L̃/Γ∞ is a
rank one or a rank two cusp. We claim that π(L̃) = L̃/Γ∞. To prove this claim, we
shall show that if there exists any g ∈ Γ such that g(L̃) ∩ L̃ 6= ∅, then g ∈ Γ∞. Let
q ∈ g(L̃) ∩ L̃, such that q = g(p), where p ∈ L̃. Then, by definition of L̃, there exist
elements A and B in Γ∞, such that

d(q, Bq) ≤ ε

d(p, Ap) = d(q, gAg−1q) ≤ ε

So, we see that B and gAg−1 both belong to 〈Γ(p, ε)〉, and as B ∈ Γ∞, we see that
〈Γ(p, ε)〉 is also an elementary group which fixes ∞. In particular, we have

gAg−1(∞) = ∞

Ag−1(∞) = g−1(∞)
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As ∞ is the only fixed point for A, we see that g(∞) = ∞, and so g is a parabolic in
Γ∞. Note that g cannot be a loxodromic as then the group generated by g and other
parabolics which fix ∞ will not be discrete, by the second part of Proposition 3.3.2.
Hence, we have proved that π(L̃) = L̃/Γ∞, and hence x belongs to π(L̃), which is
either a rank one cusp or a rank two cusp.

Now suppose that Γε is generated by a loxodromic which fixes two points on ∂H3.
We can conjugate Γε so that these two points are 0 and ∞. We denote by l the
geodesic joining 0 and ∞, which is the axis of all the loxodromics in Γε. Let Γl be
the subgroup of Γ consisting of all the loxodromics in Γ which fix l. As Γ is discrete,
we see that Γl is generated by a single loxodromic which fixes l. We consider the
following set

Ñ = {ỹ ∈H3 | ∃A ∈ Γl, A 6= id such that d(ỹ, Aỹ) ≤ ε}

From the description of Ñ, it is clear that Ñ is a cylinder of hyperbolic radius r
around the geodesic l in H3, where r depends on ε. As Γε ≤ Γl, we see that x̃ ∈ Ñ,
and hence x ∈ π(Ñ). We shall consider the projection π(Ñ) ⊂ M and show that
it is a tube of radius r around the quotient of the geodesic l, which is a closed
geodesic of length at most ε. It is clear that Ñ/Γl is a tube of radius r around
l/Γl. We claim that π(Ñ) = Ñ/Γl. To this end, we claim that if there exists any
g ∈ Γ such that g(Ñ) ∩ Ñ 6= ∅, then g ∈ Γl. The proof of this claim involves
arguments which are similar to the parabolic case, so we skip them. Thus, we have
proved that π(Ñ) = Ñ/Γl, and hence x belongs to π(Ñ), which is a tube of radius
r around a closed geodesic of length at most ε.

3.5 Implications

The thick-thin decomposition imposes strict conditions on the structure of com-
plete hyperbolic 3-manifolds. In particular, we have the following classification
for finite volume complete hyperbolic 3-manifolds.

Theorem 3.5.1. A complete hyperbolic 3-manifold M has finite volume if and only if M is
closed (compact and without boundary) or M is cusped (it is homeomorphic to the interior
of a compact manifold with torus boundary components).
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Thus, we see that the complement of hyperbolic knots in S3 must have finite vol-
ume. The volume of a hyperbolic knot is an important invariant of the knot.
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Chapter 4

Thurston’s gluing equations

4.1 Introduction

A hyperbolic structure on an n-dimensional manifold M is given by the following
data: each point of M has a neighbourhood which is homeomorphic to a ball neigh-
bourhood in Hn, and the transition maps are isometries of Hn. The hyperbolic
structure on M gives it a Riemannian metric by pull-back from the local homeo-
morphisms. We say that the hyperbolic structure on M is complete if this induced
Riemannian metric is complete, that is, M is a complete metric space. In this case
we say that M is a complete hyperbolic manifold. If M is a complete hyperbolic
manifold, it has many nice properties. So, we are naturally interested in under-
standing the conditions under which M has a complete hyperbolic structure.

Thurston has developed an approach to determine whether a 3-manifold M has
a complete hyperbolic structure and to find such a structure if it exists. This ap-
proach involves constructing M by gluing ideal tetrahedra, which are tetrahedra
without their vertices. These ideal terahedra can be naturally realized as tetrahedra
in H3 with their vertices on ∂H3. Each tetrahedron is assigned a parameter which
determines its hyperbolic shape, and Thurston’s equations are equations involving
these parameters which determine whether these hyperbolic shapes glue together
consistently to produce a complete hyperbolic structure on M.

Most of the exposition in this chapter will follow the online book by Jessica Purcell
[Pur20]. Classic resources for these topics are Thurston’s lecture notes [Thu80] and

37
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his book [TL97].

4.2 Ideal triangulations and edge parameters

4.2.1 Geometric ideal triangulation of a manifold

An ideal tetrahedron is a tetrahedron without its vertices. Ideal tetrahedra can be
used as the building blocks of many complete cusped hyperbolic manifolds.

Definition 4.2.1 (Topological ideal triangulation). A topological ideal triangulation of
a manifold M is a realization of M as the quotient of a collection of ideal tetrahedra by face
pairing homeomorphisms. Let M̂ be the cell complex obtained by gluing the collection of
tetrahedra according to the face pairing homeomorphisms. Then, M is homeomorphic to
the complement of the vertices in M̂.

An ideal tetrahedron can be realised in H3 with its vertices on ∂H3, edges as
geodesics in H3 joining these vertices and faces as geodesic ideal triangles.

Figure 4.1: An ideal tetrahedron in H3

Definition 4.2.2. A geometric ideal triangulation of M is a realization of M as a quo-
tient of a collection of hyperbolic ideal tetrahedra by face pairing isometries such that the
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tetrahedra glue together consistently to give a complete hyperbolic structure on M.

A geometric ideal triangulation of a complete hyperbolic manifold efficiently de-
scribes the hyperbolic structure on the manifold and can be used to obtain impor-
tant geometric information about the manifold such as its volume.

4.2.2 Edge parameters of an ideal tetrahedron

In this section, we wish to understand how to parametrize the shape of a hyper-
bolic ideal tetrahedron. Consider the upper half space model of hyperbolic space
and let the boundary plane be identified with the complex plane. Let e be an edge
of the tetrahedron. Isometries of H3 can be used to put the vertices of e at 0 and ∞
on ∂H3 and ensure that a third vertex is at 1. We can also rotate and scale the tetra-
hedron using elliptic and loxodromic isometries to ensure that the fourth vertex is
at some z, where z has positive imaginary part. The complex number z is said to
be the edge parameter of the edge e. We denote the edge parameter of any edge by
z(e).

By bringing any ideal tetrahedron to the standard position with three of its vertices
at 0, 1 and ∞ using isometries, we see that the set of edge parameters of a hyper-
bolic ideal tetrahedron uniquely determines its congruency class. Also, the edge
parameter of any one edge is sufficient to determine all the other edge parameters
of a hyperbolic ideal tetrahedron.

Proposition 4.2.1. Consider an ideal tetrahedron and assume one of its vertices is at ∞.
Let the vertical edges be labelled as e1, e2 and e3 in the anti-clockwise direction (when look-
ing from above). Label the non-vertical edge opposite to the edge ei as e′i, as in Figure 4.1.
Then the edge parameters satisfy the following relations:

z(ei) = z(e′i)

z(e2) =
1

1− z(e1)

z(e3) =
z(e1)− 1

z(e1)

Consider an ideal tetrahedron with one of its vertices at ∞. Then the link trian-
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gle of the vertex at ∞ is the Euclidean triangle which is given by the cross section
of the ideal tetrahedron by a horosphere about ∞. The link triangle here is thus
determined only up to Euclidean similarity. By bringing the ideal tetrahedron to
standard position and fixing the three vertices at 0, 1 and ∞, we realise that the
similarity class of the link triangle uniquely determines the congruency class of
the ideal tetrahedron.

We will now describe how to go back and forth between these two descriptions of
a hyperbolic ideal tetrahedron.

Proposition 4.2.2. Suppose we know the similarity class of the link triangle of any one
vertex of the ideal tetrahedron. Let the angles of the link triangle be α, β and γ. Then, the
edge parameter of the edge e which has dihedral angle α is given by

z(e) =
sin(γ)
sin(β)

· eiα

Now suppose that we know the edge parameter of one of the edges of the ideal tetrahedron.
Let this edge be labelled e1 and let the other two edges be labelled as e2 and e3 in the
anticlockwise sense. Then, if the angles α, β and γ correspond to the dihedral angles of the
edges e1, e2 and e3, then we see from Figure 4.1 that these angles are the arguments of the
corresponding complex numbers, that is

α = arg(z(e1))

β = arg(z(e2))

γ = arg(z(e3))

4.3 Gluing consistency equations

In the following sections, we will assume that M is homeomorphic to the interior
of a compact manifold with torus boundary components unless stated otherwise.
Using the edge parameters of the ideal tetrahedra it is possible to find out the con-
ditions under which M admits a hyperbolic structure with respect to which each
tetrahedron of the given topological ideal triangulation of M becomes a hyperbolic
ideal tetrahedron. We arbitrarily assign a variable edge parameter to each edge of
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each ideal tetrahedron in the triangulation. The existence of a hyperbolic structure
then imposes constraints on these edge parameters which we can solve to obtain
the solution space of possible hyperbolic structures on M with respect to the given
topological ideal triangulation. These equations are known as Thurston’s gluing
consistency equations.

Definition 4.3.1 (Hyperbolic structure). An n-dimensional manifold M is said to have
a hyperbolic structure if each point of M has a neighbourhood isometric to a ball in Hn

such that the transition maps are isometries of Hn.

The hyperbolic structure on M induces a Riemannian metric on M via pullback.
We say that the hyperbolic structure on M is complete if the induced Riemannian
metric on M is complete, or equivalently, M is a complete metric space with the
metric induced by the Riemannian metric (this equivalence follows by the Hopf-
Rinow theorem).

Definition 4.3.2. M is said to have a hyperbolic structure (possibly incomplete) with re-
spect to an ideal triangulation τ if each tetrahedron of the ideal triangulation is isometric to
a hyperbolic ideal tetrahedron in the hyperbolic metric induced by the hyperbolic structure
on M.

Let τ be a topological ideal triangulation of M. Consider an edge e of τ. Let Ti

be the ideal tetrahedra glued to the edge e in a cyclic order and let zi be the edge
parameter of the edge of Ti which is identified with e. Then the edge gluing con-
sistency equation for the edge e is given by

n

∏
i=1

zi = 1 (4.1)

n

∑
i=1

arg(zi) = 2π (4.2)

These two equations can be compactly expressed as a logarithmic equation.

n

∑
i=1

log(zi) = 2πi (4.3)

Theorem 4.3.1 (Thurston’s gluing consistency equations). M has a hyperbolic struc-
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ture with respect to the topological ideal triangulation τ if and only if the edge gluing
consistency equations have a solution for each edge of τ.

Proof. Suppose the edge gluing consistency equations have a solution for each
edge of τ. The edge parameters of such a solution will give a hyperbolic struc-
ture on the complement of the 1-skeleton of τ in M, which we shall denote by M̂.
We shall prove that the hyperbolic structure extends to the 1-skeleton of τ. Con-
sider an edge e of τ and let Ti be the tetrahedra which meet the edge e in a cyclic
order and let ei be the edge from Ti which is identified to e. Lift the tetrahedron
T1 to H3 such that the edge e1 lifts to the edge (0, ∞) in H3 and the tetrahedron
is in standard position for the edge parameter z(e1). Then, lift the tetrahedron T2

such that e2 is identified to (0, ∞) and the appropriate face of T2 is identified with
the face (0, z(e1), ∞) of T1. We will ensure that the dihedral angle of T2 at the edge
(0, ∞) is oriented in the anti-clockwise direction. So the vertices of T2 will now be
at 0, ∞, z(e1) and z(e1)z(e2). Similarly, we can continue lifting all the tetrahedra
from T2 to Tn. The last vertex of Tn will be at the point z(e1)z(e2)...z(en) which will
actually be equal to 1, as the edge gluing equations are satisfied, ensuring that the
lift of the tetrahedron Tn glues to T1 consistently. The imaginary part of the edge
gluing equation thus ensures that the dihedral angles around the edge e add up
to 2π, so the tetrahedra are glued around the edge e for only one rotation. The
real part of the equation ensures that there are no shearing singularities, that is,
the final face of Tn glues consistently with the initial face of T1. See Figure 4.2 and
Figure 4.3. By lifting these tetrahedra in this way, we see that we can extend the
hyperbolic structure on M̂ to the edge e. We can similarly extend the hyperbolic
structure to all edges of τ and get a consistent hyperbolic structure on all of M.

Suppose M has a hyperbolic structure with respect to the ideal triangulation τ.
Consider an edge e of this ideal triangulation. Any point on the edge has a neigh-
bourhood isometric to a ball in H3, and the dihedral angles of the edges meeting
e must add up to 2π at that point. Since we are given that each tetrahedron is iso-
metric to a hyperbolic ideal tetrahedron under the induced hyperbolic metric, the
dihedral angle will be constant at each point of the edge e, and hence the dihedral
angles at the edge e will add up to 2π. This is equivalent to the existence of a so-
lution to the imaginary part of the edge gluing equations. Also, as the faces of the
ideal tetrahedra meeting e glue together without any shearing, the real part of the
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edge gluing equations also have a solution.

Figure 4.2: Proof of the edge gluing consistency equation

Figure 4.3: Shearing singularities while gluing tetrahedra around an edge

4.4 Gluing completeness equations

Given a topological ideal triangulation τ of M, we can assign edge parameters to
each edge of each tetrahedron of τ and solve the gluing consistency equations to
determine whether M has a hyperbolic structure with respect to τ. However, this
hyperbolic structure may be incomplete. In fact, Mostow-Prasad rigidity guaran-
tees that if a complete hyperbolic structure exists on M, it is unique up to isometry.
So most solutions of the edge gluing equations will yield incomplete hyperbolic
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structures. Thurston’s gluing completeness equations give additional constraints
under which the solutions of the gluing consistency equations will yield a com-
plete hyperbolic structure on M.

A hyperbolic structure on M induces a similarity structure on each cusp torus of
M. A similarity structure on a torus is a (Sim(E2), E2) geometric structure on the
torus, where Sim(E2) is the group of similarities of the Euclidean plane. In other
words, each point on the torus has a neighbourhood which is homeomorphic to
a neighbourhood in E2, and the transition maps are similarities of the Euclidean
plane. Parabolic holonomy elements of the hyperbolic structure will correspond to
Euclidean translations in the holonomy of the similarity structure, elliptic holon-
omy elements will correspond to Euclidean rotations, and loxodromic holonomy
elements will correspond to the scaling holonomies of the similarity structure. We
will state a criteria for the completeness of the hyperbolic structure on M in terms
of the induced similarity structures on the cusp tori of M.

Theorem 4.4.1. The hyperbolic structure on M is complete if and only if the induced
similarity structure on each cusp torus is Euclidean.

Proof. Suppose the induced similarity structure on one of the cusp tori is not Eu-
clidean. That is, the holonomy group of the similarity structure consists not only of
congruences, but also scaling transformations. These scaling transformations must
be induced from loxodromic transformations in the holonomy group of the hyper-
bolic structure on M. If we lift this cusp to ∞ in H3, we see that the holonomy
group of the hyperbolic structure on M must contain loxodromic transformations.
Consider a non-trivial closed curve α on the cusp torus, such that the holonomy of
α is a scaling transformation which corresponds to a loxodromic isometry of the
form x 7→ λx, where λ ∈ R, λ > 1. Let T0 be a horospherical triangle in one of
the tetrahedra corresponding to a cusp triangle which α meets and consider the
segment of α in this triangle. T0 meets the next tetrahedron along the curve α in a
segment on their shared face; so, we can develop T0 uniquely to get a horospherical
triangle T1 in the next tetrahedron and continue the segment of α in the triangle T2.
In this way, we can keep developing the horospherical triangles along the curve α

and continuing the curve α in these triangles. As the holonomy ρ(α) is loxodromic,
these horospherical triangles will not close up consistently, but will spiral out into
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the cusp in M. Let us denote the continuation of the curve α by α̂; it will also spi-
ral into the cusp in M. When seen in the fundamental domain for M in H3, the
horospherical triangle ρ(α)(T0) will not match up with the original horospherical
triangle T0, but it will be at a greater height in H3, where the ratio in heights is λ.

Figure 4.4: When the holonomy ρ(α) has non-trivial scaling, the horospherical tri-
angles do not close up

Let x0 be a point on the horospherical triangle T0 in H3. Consider the sequence
(ρ(α))n(x0) in H3 and let us label these points xn. The distance between any xn

and xn+1 in the vertical direction in H3 is λ. Thus, if we consider the distance
between xn and xn+1 along the curve α̂ in M and denote it by dα̂(xn, xn+1), we
have

dα̂(xn, xn+1) = e−λdα̂(xn−1, xn)

Thus, the image of the sequence xn in M is a Cauchy sequence in M. However, as
the sequence xn goes to ∞ in H3, the image of these points will not converge in M.
Thus, M is not complete.

Now suppose the induced similarity structure on each cusp torus of M is Eu-
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clidean. This means that there are no scaling transformations in the holonomy
group for any cusp torus, and the holonomy groups for each cusp torus con-
sists only of Euclidean congruences. These congruences can be induced only by
parabolic transformations in the holonomy group of the hyperbolic structure on
M (since elliptic transformations do not act freely). Thus, if we consider any non-
trivial closed curve on any cusp torus, its holonomy in the hyperbolic structure
on M has to be parabolic. So, consider horospherical triangles around any cusp,
they will close up consistently. For each cusp of M, choose horospherical trian-
gles which close up around it. Delete the interior of the horoball bound by these
horospheres from M and let the resultant compact submanifold of M with torus
boundary components be called M0. For any t > 0, let Mt be the compact manifold
obtained by removing the interiors of horoballs which are at a distance t (towards
the cusps) from the original choice of horoballs. Then the sets Mt for t > 0 satisfy
the following properties:

1. For each t > 0, Mt is a compact submanifold of M with torus boundary
components.

2.
⋃

t>0 Mt = M

3. Mt+a contains a neighbourhood of radius a around Mt.

Thus, any Cauchy sequence in M must lie entirely in Mt for sufficiently large t. As
Mt is compact, the Cauchy sequence must converge in Mt. Hence, M is complete.

The ideal triangulation τ induces a triangulation on each cusp torus of M. Con-
sider any cusp torus T of M and let the induced triangulation of T be τ̄. The edge
parameters of the ideal edges corresponding to a solution of the edge gluing equa-
tions give rise to complex numbers corresponding to the vertices of each triangle of
τ̄. These parameters can be used to formulate the condition given in the previous
theorem into a set of equations known as the gluing completeness equations.

Definition 4.4.1. Let α be a loop corresponding to the homotopy class [α] ∈ π1(T). Then
we can associate a complex number H([α]) corresponding to each homotopy class of loops
on T as follows:
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First orient the loop α. Homotope α such that it runs monotonically through each triangle
of the triangulation, that is, it enters each triangle of the cusp triangulation through one
side and exits through a different side, and cuts off one vertex in each triangle. Let zi be
the complex parameter corresponding to the vertex cut off by α in the triangle ti. Assign a
sign parameter εi which takes values based on the orientation of the curve α with respect
to the vertex cut off by α in the triangle ti. Set εi = 1 if the vertex lies on the left side of α

and εi = −1 if the vertex lies on the right side of α. Then, we define the parameter H([α])

as follows:

H([α]) =
n

∏
i=1

zεi
i (4.4)

See an example worked out in Figure 4.5.

Figure 4.5: Calculating H(α)

Proposition 4.4.1. 1. The map H : π1(T) → C∗ is well defined, that is, it does not
depend on the choice of loop in the homotopy class [α]

2. H : π1(T)→ C∗ is a group homomorphism.

H([α] ∗ [β]) = H([α]) · H([β])
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Let [α] and [β] be generators of π1(T), where T is a cusp torus of M. Then the
completeness equations for the cusp with boundary T are

H([α]) = H([β]) = 1 (4.5)

(4.6)

This equation can be written in the logarithmic form as

log(H([α])) = log(H([β])) = 0 (4.7)

Theorem 4.4.2. Let zi be edge parameters which solve the edge gluing consistency equa-
tions for M given the ideal triangulation τ. Then, the hyperbolic structure induced on M
due to these parameters is complete if and only if the edge parameters zi satisfy the gluing
completeness equations for each cusp of M. Also, if the zi solve the gluing completeness
equations, the topological ideal triangulation τ with hyperbolic structure given by the edge
parameters zi is actually a geometric ideal triangulation of M.

Proof. By Theorem 4.4.1, it is sufficient to prove that the induced similarity struc-
ture on each cusp torus is Euclidean if and only if the the edge parameters ob-
tained as a solution of the edge gluing consistency equations satisfy the gluing
completeness equations. We first show that if the gluing completeness equations
are satisfied, the holonomy group for the similarity structure on each cusp torus
consists only of translations and no scalings or rotations (rotations are induced by
elliptic transformations which do not act freely). Let αi and βi be the generators for
π1(Ti). From the completeness equations we have that H(αi) = H(βi) = 1 for all
i.We shall prove that the holonomy transformations ρ(αi) and ρ(βi) are Euclidean
translations using the complex parameters associated with the vertices of the cusp
triangulation.

Let us focus our attention on the cusp torus T1 and consider the generator α1 for
π1(T1). We shall homotope α1 and orient it as required in Definition 4.4.1. Let e1 be
an edge of the cusp triangulation which α1 intersects. Let v be a vector of the same
length as e1 pointing in the direction of e1 and oriented with respect to the orienta-
tion of α1 as per the right hand rule. We shall consider the effect of the holonomy
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ρ(α1) on the vector v.

We can rotate v around a vertex of the edge e1 and scale it appropriately to align
it with the edge e2. This rotation and scaling is the transformation given by multi-
plying the vector v by the complex parameter z1 associated to the vertex. We rotate
by the argument of z1 and scale by the magnitude of z1. Similarly, we can rotate
and scale the vector along e2 to align it with the edge e3. As there is a path of edge
vectors from the initial edge e1 to the edge ρ(α1)(e1), we can keep track of how
much we need to scale and rotate to go from e1 to ρ(α1)(e1), which will give us the
holonomy ρ(α1). If we rotate anti-clockwise around a vertex, we multiply by the
parameter of that vertex, and if we rotate clockwise around a vertex, we need to
divide by the parameter of that vertex. The final rotation and scaling of the holon-
omy element ρ(α1) is given by the product of all the complex parameters which
we have multiplied and divided by to go from e1 to ρ(α1)(e1). This is the same as
the complex number H(α1), defined in Definition 4.4.1. The holonomy ρ(α1) is a
Euclidean translation if and only if it does not rotate or scale, which happens if and
only if H(α1) = 1.

The same argument will tell us that H(β1) = 1 for the similarity structure in-
duced on the cusp torus T1 to be Euclidean. Similarly, we will obtain that H(αi) =

H(βi) = 1 for all i, since the similarity structure induced on each cusp torus must
be Euclidean for the hyperbolic structure on M to be complete. All the steps in this
proof are reversible, that is, any step is true if and only if the previous one is true;
so, the converse is also proved.

4.5 Example of the figure eight knot complement

The figure eight knot complement is one of the simplest cusped hyperbolic mani-
folds and admits a geometric triangulation consisting of two regular ideal tetrahe-
dra. A procedure developed by Menasco to obtain this standard triangulation of
the figure eight knot complement is described in the first chapter of Purcell’s book
[Pur20]. In this section, we shall consider the standard topological ideal triangu-
lation of the figure eight knot complement into two ideal tetrahedra and solve the
edge gluing consistency and the gluing completeness equations for this triangula-
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tion. This example was first described by Thurston in his notes [Thu80].

Figure 4.6: Standard ideal triangulation of the figure eight knot complement

The standard ideal triangulation of the figure eight knot complement is as shown
in Figure 4.6. It consists of two ideal tetrahedra whose faces are identified pair-
wise. There are two edges in this triangulation and only one ideal vertex which
corresponds to the cusp of the knot complement. We shall assign edge parameters
to the edges of both the tetrahedra and solve Thurston’s equations for this triangu-
lation. Assign the edges of the first tetrahedron the edge parameters z1, z2, and z3,
and that of the second tetrahedron w1, w2, and w3. Note that opposite edges of a
tetrahedron must be assigned the same edge parameters and that the edge param-
eters of a tetrahedron must satisfy the relations of Proposition 4.2.1.

We first solve the edge gluing consistency equations for the two edges of the trian-
gulation. For the edge with one tick mark, we have the equation

z2
1z3w2

1w3 = 1 (4.8)

For the edge with two tick marks, we have

z2
2z3w2

2w3 = 1 (4.9)

Substituting the relations between edge parameters from Proposition 4.2.1 into
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Equation 4.8 and Equation 4.9, we get

z1(z1 − 1)w1(w1 − 1) = 1 (4.10)

Solving for z1 in terms of w1, we get

z1 =
1±

√
1 + 4/(w1(w1 − 1))

2
(4.11)

For the triangulation to have a hyperbolic structure, we need both z1 and w1 to
have positive imaginary part. For each value of w1, we get at most one solution for
z1 which has positive imaginary part. Also a solution for z1 with positive imagi-
nary part exists only if the discriminant 1 + 4/(w1(w1 − 1)) is not a positive real
number or zero. Thus, the solution space for w1 is given in Figure 4.7. The value
for z1 is fixed given any value of w1 from this solutions space, and then all the other
edge parameters will be known. Thus, this solution space is a parameter space for
the possible hyperbolic structures on the figure eight knot complement with the
standard ideal triangulation.

Figure 4.7: Solution space of w1 for the edge gluing equations for the figure eight
knot complement

All of these solutions except one will turn out to give incomplete hyperbolic struc-
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(a)

(b)

Figure 4.8: Cusp triangulation for the figure eight knot complement

tures. To see this, we will solve Thurston’s gluing completeness equations. We
first obtain the cusp triangulation from the triangulation of the knot complement
and assign each vertex of the triangulation a complex parameter which is the edge
parameter of the ideal edge corresponding to that vertex. This cusp triangulation
along with the complex parameters is shown in Figure 4.8b.

We then calculate the H map for the generators of the holonomy group of the cusp
torus. In the case of the figure eight knot complement, we have two generators,
α and β for the holonomy group of the cusp torus, which are depicted in figure
Figure 4.8b in orange and green respectively. Then, we see that the value of the H
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map for the generators is given by

H(α) = (
z2z3

w2w3
)2 (4.12)

H(β) =
w1

z2
(4.13)

The completeness equations for the cusp are H(α) = H(β) = 1. Solving these
equations for the solutions of the edge gluing consistency equations, we get

z1 = z2 = z3 =
1 +
√

3i
2

(4.14)

w1 = w2 = w3 =
1 +
√

3i
2

(4.15)

Thus, the geometric triangulation of the figure eight knot complement consists of
two regular ideal tetrahedra with all dihedral angles π/3.

4.6 Infinitely many geometric triangulations of the fig-

ure eight knot complement

In this section, we shall see that the figure eight knot complement has infinitely
many geometric triangulations which are obtained from the standard triangula-
tion by performing 2-3 Pachner moves. This method was first described by Blake
Dadd and Aochen Duan in [DD16].

After performing a 2-3 Pachner move on the two tetrahedra in the initial geometric
triangulation, if we set the edge parameters of the equatorial edges in the new tri-
angulation to be the product of the equatorial edge parameters in the initial trian-
gulation, and assign all the other edge parameters according to Proposition 4.2.1,
then both the edge gluing consistency and the completeness equations are satis-
fied. The only issue that can occur is that the new triangulations may have edge
parameters with negative or zero imaginary part. We will thus find the conditions
required to obtain a triangulation where all the tetrahedra have edge parameters
with positive imaginary part.
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Figure 4.9: 2-3 Pachner move and edge parameters of new tetrahedra

Let τ be a geometric ideal triangulation of a cusped hyperbolic 3-manifold M. Sup-
pose τ has two distinct tetrahedra A and B. Label the vertices of A and B with the
numbers 0, 1, 2 and 3, and let the faces of the tetrahedra be labelled according to
this labelling of the vertices. Suppose A and B are identified along two pairs of
faces, that is A123 = B230 and A012 = B013. We will perform a 2-3 Pachner move
along the face A123 = B230 to obtain three tetrahedra C, D and E which are rela-
belled as per Figure 4.9. We will see that the resulting triangulation is geometric,
where the edge parameters of the equatorial edges set in the resulting triangulation
are equal to the product of the equatorial edge parameters in the initial triangula-
tion.

Theorem 4.6.1. Let τ be a geometric ideal triangulation of a cusped hyperbolic 3-manifold
M. Let A and B be two ideal tetrahedra of τ which satisfy the following conditions:

1. A and B are identified along two pairs of faces, that is A123 = B230 and A012 =

B013
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2. The edge parameters of A and B are equal, that is, zA = zB

3. Re(zA) < 1

Then a 2-3 Pachner move along the face A123 = B230 produces a geometric triangulation
of M. Suppose, we label the tetrahedra C, D and E produced by the 2-3 Pachner move as
per Figure 4.9. Then, on relabelling the tetrahedron E as A and the tetrahedron D as B,
they will again satisfy conditions 1, 2 and 3.

The proof of this theorem can be found in [DD16]. We shall denote the figure eight
knot complement as M8. Let τ2 be the standard triangulation of M8 consisting of 2
ideal tetrahedra. We will repeatedly perform 2-3 Pachner moves on τ2 and relabel
the tetrahedra according to Theorem 4.6.1. In this process, we will obtain ideal
triangulations of M8 consisting of n tetrahedra for every n ∈ N. We shall denote
the ideal triangulation with n tetrahedra by τn.

Theorem 4.6.2. τn is a geometric triangulation of the figure eight knot complement M8

for every n ∈N, n ≥ 2.

Proof. We shall prove this theorem by induction. We know from the previous sec-
tion that τ2 is a geometric triangulation of M8 which satisfies conditions 1, 2 and
3 of Theorem 4.6.1. Suppose τn is known to be a geometric triangulation of the
M8 satisfying conditions 1, 2 and 3 of Theorem 4.6.1, we shall show that τn+1

is also a geometric triangulation of M8 which satisfies the same conditions. But
τn+1 is obtained from τn by performing a 2-3 Pachner move along the shared face
A123 = B230 of the two tetrahedra labelled A and B in τn; so, the previous claim
is true due to Theorem 4.6.1. Thus, we can perform 2-3 Pachner moves repeatedly
on τ2 to obtain infinitely many geometric triangulations of the figure eight knot
complement.
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Chapter 5

Angle structures and the volume
functional

5.1 Introduction

Thurston’s gluing equations are non-linear and can be very difficult to solve ex-
cept for the simplest of triangulations. So, Casson and Rivin came up with the
approach of separating the equations into a linear and non-linear part. The linear
part requires solving linear equations to find whether a triangulation supports an
angle structure. An angle structure on a triangulation is the data of dihedral an-
gles corresponding to the edges of all tetrahedra in the triangulation such that the
angles satisfy certain constraints arising from Thurston’s equations. Thus, angle
structures effectively linearise Thurston’s gluing equations.

Definition 5.1.1. Let M be a 3-manifold and τ be an ideal triangulation of M. An angle
structure on τ is an assignment of dihedral angles to the edges of each tetrahedron in τ

which satisfies the following conditions:

• Each angle α is in the range (0, π)

• Opposite edges in a tetrahedron are assigned the same angle

• In each tetrahedron, the angles of the edges incident to an ideal vertex of the tetrahe-
dron add up to π. Suppose these angles are α, β and γ. Then

α + β + γ = π

57
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• The angles of the edges which are identified to the same edge in the manifold add up
to 2π. If these angles are αi, then

n

∑
i=1

αi = 2π

Thus, the existence of an angle structure for an ideal triangulation of a manifold is
equivalent to the existence of a solution to the imaginary part of Thurston’s edge
gluing consistency equations. An angle structure is the solution to a system of
finitely many linear equations and inequalities, so the existence of an angle struc-
ture is easy to verify computationally. The existence of an angle structure gives us
a lot of information about the topology and geometry of the manifold, as we can
see from the following theorem. This theorem is due to Casson, and a proof of this
theorem can be found in Lackenby’s paper [Lac00].

Theorem 5.1.1. Let M be a compact orientable 3-manifold whose interior has an ideal
triangulation admitting an angle structure. Then M has torus boundary components and
M is irreducible, ∂-irreducible, atoroidal and anannular. Therefore, M admits a complete
hyperbolic metric in its interior.

In Casson and Rivin’s approach, solving the non-linear part of Thurston’s equa-
tions and finding the geometry of the ideal triangulation which realises the com-
plete hyperbolic metric on the manifold is reduced to maximizing a certain volume
functional over the space of all angle structures of the triangulation of M. This vol-
ume functional arises from the volume of the ideal tetrahedra in the triangulation.
The following theorem was independently proved by both Casson and Rivin and
its proof can be found in this excellent paper by Futer and Guéritaud [FG04].

Theorem 5.1.2. Let M be a compact orientable 3-manifold with torus boundary compo-
nents whose interior admits an ideal triangulation τ. Then if p is the critical point of the
volume functional over the space of all angle structures on the triangulation, p corresponds
to a complete hyperbolic metric on the interior of M and the interior of M has a geometric
triangulation given by the angles of p.

In this chapter, we will describe the program developed by Casson and Rivin in
detail and prove Theorem 5.1.1 and Theorem 5.1.2. We will also calculate a formula
for the volume of a hyperbolic ideal tetrahedron given its dihedral angles. Much of
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the exposition in this chapter is borrowed from that of the online book by Purcell
[Pur20]. We have also followed the proofs originally given by Futer and Gueritaud
in their paper [FG10].

5.2 Angle structures and hyperbolicity

In this section, we shall prove that the existence of an ideal triangulation on M
which supports an angle structure implies that M is a complete hyperbolic mani-
fold. Thurston’s hyperbolization theorem (Corollary 1.3.1.1) will be a crucial tool in
our proof of this theorem. Thus, we will show that the existence of an angle struc-
ture on a triangulation of M precludes the existence of essential spheres, disks,
annuli, and tori. We will need the theory of normal surfaces in order to show this.
We will define a combinatorial area for normal surfaces and relate it to the Eu-
ler characteristic of the surface to prove the non-existence of the aforementioned
essential surfaces.

Definition 5.2.1 (Normal surfaces in an ideal polyhedral decomposition). Let M
have a decomposition into ideal polyhedra. We describe when a properly embedded surface
S is in normal form with respect to the polyhedral decomposition.

Let P be obtained from an ideal polyhedron by truncating its ideal vertices to obtain ’bound-
ary’ faces. We call the new edges which bound these boundary faces boundary edges. Let
D be a disk which is properly embedded in P, such that ∂D ⊂ ∂P and consider the disk D
in the truncation of P. Then D is said to be normal with respect to the polyhedron P if it
satisfies the following properties:

• The boundary of D is transverse to all the faces, boundary faces, edges and boundary
edges of P.

• ∂D does not lie entirely in any one face or boundary face of P.

• ∂D meets each edge at most once.

• ∂D meets each boundary face at most once.

• Let α be an arc of intersection of ∂D with a face of P. Then α cannot have both its
endpoints on the same edge, on the same boundary edge, or on an adjacent edge and
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boundary edge of P.

Figure 5.1: What is not allowed for a normal disk in a truncated tetrahedron

A properly embedded surface S in a manifold M is said to be normal with respect to an
ideal polyhedral decomposition if it each intersects each polyhedron of the decomposition in
normal disks.

Normal surfaces are easy to work with due to their simple combinatorial descrip-
tion. The following theorem due to Kneser will allow us to consider only normal
surfaces in our proof of Theorem 5.1.1 using Thurston’s hyperbolization theorem.

Theorem 5.2.1. Let M be a 3-manifold admitting an ideal polyhedral decomposition. Then,

• If M has an essential sphere, then it must also contain an essential sphere in normal
form.

• If M is irreducible and it has an essential disk, then it must also contain an essential
disk in normal form.

• If M is irreducible and ∂-irreducible and it contains an essential surface S, then S
can be isotoped in M to intersect the polyhedral decomposition in normal form.
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We need to characterise the essential surfaces in a triangulated manifold M which
admits an angle structure using the combinatorial description of the surfaces in the
normal form. So, we will define a quantity called combinatorial area which will
relate to the Euler characteristic of the surface.

Definition 5.2.2 (Combinatorial area). Let M be a 3-manifold with an ideal triangula-
tion τ. Suppose we have an angle structure on this triangulation. Suppose D is a normal
disk with respect to a tetrahedron of τ such that the ideal edges which meet ∂D are assigned
the angles α1,..., αn. Then the combinatorial area of D with respect to this angle structure
is defined to be

a(D) =
n

∑
i=1

(π − αi)− 2π + π|∂D ∩ ∂M| (5.1)

The combinatorial area of a normal surface S is defined to be the sum of the combinatorial
areas of all the disks that make up S.

Figure 5.2: Vertex triangle and boundary bigon

We now find the combinatorial area of two important examples of normal disks.
The first example, which is shown in Figure 5.2, is called a vertex triangle. Its
combinatorial area is given by

a(D) = (π − α) + (π − β) + (π − γ)− 2π = π − (α + β + γ) = 0

The combinatorial area of a vertex triangle is 0 as a vertex triangle is parallel to a
truncated ideal vertex of the tetrahedron, and the dihedral angles around an ideal
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vertex sum to π. The second important example of a normal disk is called a bound-
ary bigon, which is shown in Figure 5.2. The combinatorial area of a boundary
bigon is given by

a(D) = 0− 2π + π · 2 = 0

Any boundary bigon thus has zero combinatorial area since a boundary bigon runs
between two boundary faces of the tetrahedron and is parallel to an ideal edge of
the tetrahedron.

Proposition 5.2.1. Let M be a 3-manifold with an ideal triangulation τ which has an
angle structure. Then the combinatorial area of every normal disk in M is non-negative.
Moreover, the combinatorial area of a normal disk is zero if and only if the disk is a vertex
triangle or a boundary bigon.

Proof. We consider several possible cases for a normal disk D properly embedded
in an ideal tetrahedron.

Case 1: Suppose ∂D meets at least two boundary faces of the ideal tetrahedron.
Then, from the definition of combinatorial area, we get

a(D) ≥∑
i
(π − αi) ≥ 0

Thus, a(D) is non-negative in this case. Also, in this case, a(D) is 0 if and
only if ∂D does not meet any ideal edge and meets exactly two boundary
faces of the ideal tetrahedron, so D must be a boundary bigon.

Case 2: Suppose ∂D meets exactly one boundary face of the ideal tetrahedron.
Then, as ∂D cannot meet the ideal edges which are adjacent to the boundary
face, it must meet two ideal edges on the opposite side of the boundary face.
These edges cannot be opposite edges of the ideal tetrahedron. Suppose the
dihedral angles associated to these edges are α and β, then the combinatorial
area of D is given by

a(D) ≥ (π − α) + (π − β)− 2π + π = π − α− β = γ > 0

Thus, a(D) is strictly positive in this case.
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Case 3: Suppose ∂D does not meet any boundary faces. Then, either D is a vertex
triangle, or it is a quad separating two pairs of opposite edges. The combina-
torial area of a vertex triangle is 0. The combinatorial area of a quad is strictly
greater than 0 as

a(D) = 2(π − α) + 2(π − β)− 2π = 2(π − α− β) = 2γ > 0

Here, α and β are the dihedral angles assigned to the two pairs of opposite
edges that the quad intersects, and γ is the remaining dihedral angle of the
ideal tetrahedron.

Thus, we have shown that a(D) is always non-negative and is 0 if and only if D is
a boundary bigon or a vertex triangle.

We shall now state a Gauss-Bonnet type theorem involving combinatorial area
which when combined with the previous proposition can be used to prove that
any essential surface in M must have negative Euler characteristic.

Proposition 5.2.2 (Combinatorial Gauss-Bonnet). If S is a normal surface in an ideal
triangulation of M which has a given angle structure, then the combinatorial area of S
satisfies

a(S) = −2πχ(S) (5.2)

where χ is the Euler characteristic of S.

Proof. We know that the Euler characteristic of S is given by χ(S) = v − e + f ,
where v, e and f are the number of vertices, edges and faces in a polygonal decom-
position of S. The intersection of the ideal triangulation of M with S determines
a polygonal decomposition of S. Here, f will be equal to the number of normal
disks in the triangulation. The number of edges e in the polygonal decomposition
corresponds to the number of intersections of S with the ideal faces of the triangu-
lation. The number of vertices v of the polygonal decomposition corresponds to
the number of intersections of the surface S with ideal edges of the triangulation.
The intersections of S with boundary edges and boundary faces do not count as
they cancel each other out. This is because each time S intersects a boundary face,
it has to intersect a boundary edge bordering this face, and each time S intersects a



64 CHAPTER 5. ANGLE STRUCTURES AND THE VOLUME FUNCTIONAL

boundary edge, it must intersect a boundary face which this edge borders. So the
intersections of S with boundary faces of M are in one to one correspondence with
the the intersections of S with boundary edges of M, and they cancel each other
out.

The combinatorial area of S is then given by the sum of the combinatorial area of
normal disks D which make up the surface S.

a(S) = ∑
D

a(D)

= ∑
D
(∑

i
(π − αi) + π|∂D ∩ ∂M| − 2π)

= π ∑
D
(∑

i
1 + |∂D ∩ ∂M|)−∑

D
∑

i
αi −∑

D
2π

The last term in the above sum is equal to 2π f , as the number of normal disks
is equal to the number of faces in the polygonal decomposition of S. The middle
term ∑D ∑i αi is equal to the sum of the dihedral angles of all the ideal edges met
by S. Therefore, this term is equal to 2πv.

We claim that the sum ∑i 1 + |∂D ∩ ∂M| is equal to the number of edges e of D
which lie in the ideal faces of the ideal triangulation, which we denote as e(D). To
see this, we must orient the boundary ∂D. Then, we see that each edge lying in an
ideal face is in one-one correspondence with its initial vertex. If the initial vertex
lies on an ideal edge, it is counted in the sum ∑i 1, and if the initial vertex lies on
a boundary edge it is counted in the term |∂D ∩ ∂M|. This does not count edges
which lie on boundary faces as the term |∂D ∩ ∂M| only accounts for one edge for
each boundary face, which is the edge that exits the face and has its initial vertex
on a boundary edge of that face.

Thus, the term ∑D(∑i 1+ |∂D ∩ ∂M|) in the summation above is equal to ∑D e(D),
which counts each edge exactly twice, so its value is exactly 2e. Substituting these
values in the calculation of a(S), we get
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a(S) = 2πe− 2πv− 2π f = −2πχ(S)

We now have all the tools to prove Theorem 5.1.1.

Proof. Suppose M has an essential sphere. Then, by Theorem 5.2.1, M must contain
an essential sphere S which is in normal form with respect to the ideal triangula-
tion of M. From Proposition 5.2.1, we see that the combinatorial area of S must
be non-negative. However, Proposition 5.2.2 tells us that a(S) = −4π. This is a
contradiction. So, M must be irreducible. Similarly, we can prove that M does not
contain an essential disk; so M is ∂-irreducible.

The boundary of M is made up of the boundary faces of the triangulation. The
boundary can be pushed in slightly to obtain a boundary parallel surface which
is homeomorphic to the boundary. This surface is thus made of vertex triangles,
which have zero combinatorial area. Thus, ∂M is a closed surface in the orientable
manifold M which has zero combinatorial area. So, ∂M must be a disjoint union of
tori.

Suppose M contains an essential torus T. Then by Theorem 5.2.1, the torus T can
be isotoped such that it is in normal form with respect to the triangulation of M.
Proposition 5.2.2 then tells us that a(T) = 0. Thus, from Proposition 5.2.1, we see
that T must be composed of vertex triangles and boundary bigons. As T is a closed
surface properly embedded in M, it does not meet the boundary of M, and hence
all the normal disks of T must be vertex triangles. However, as vertex triangles are
parallel to boundary faces of the triangulation, we see that the torus T is parallel to
a component of ∂M. Thus, T is boundary parallel, which contradicts the assump-
tion that T is essential. Thus, M does not contain any essential tori.

Now, suppose C is an essential annulus in M, then it can be isotoped to normal
form by Theorem 5.2.1. Then, from Proposition 5.2.2, we see that a(C) = 0. So,
from Proposition 5.2.1, we see that C must be must be composed of vertex trian-
gles and boundary bigons. As C is a properly embedded surface which has non-
empty boundary, it must contain at least one boundary bigon. This bigon must
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be glued to another boundary bigon in an adjacent tetrahedron. This is becuase
the common edge of these normal disks shared by these tetrahedra runs between
two boundary faces, and the normal disk in the adjacent tetrahedron is thus re-
stricted to be a boundary bigon due to the restrictions imposed on normal disks by
Definition 5.2.1. So, all the normal disks which make up C are boundary bigons,
and they are forced to encircle an edge of the ideal triangulation due to the way
boundary bigons glue to each other. Then, C is compressible which contradicts the
assumption that C is essential. Thus, M does not contain any essential annuli.

Hence, by Thurston’s hyperbolization theorem (Corollary 1.3.1.1) we see that M
must admit a complete hyperbolic structure.

5.3 Volume of an ideal tetrahedron

In this section, we will obtain a formula for the volume of a hyperbolic ideal tetra-
hedron given its dihedral angles. This formula involves the Lobachevsky function
Λ, which is related to the dilogarithm function.

Definition 5.3.1. Define the Lobachevsky function Λ : R→ R by

Λ(θ) = −
∫ θ

0
log |2 sin u|du (5.3)

Theorem 5.3.1. The volume of a hyperbolic ideal tetrahedron T with dihedral angles α, β

and γ is given by
vol(T) = Λ(α) + Λ(β) + Λ(γ)

We first need to understand the properties of the Lobachevsky function by relating
it to the dilogarithm function.

Proposition 5.3.1. The Lobachevsky function Λ satisfies the following properties:

• It is well defined and continuous on R

• It satisfies a series expansion given by

Λ(θ) =
1
2

∞

∑
n=1

sin(2nθ)

n2
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• Λ is an odd function, that is, Λ(−θ) = −Λ(θ)

• It is a periodic function with period π, that is, Λ(θ + π) = Λ(θ)

• It satisfies the identity Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2)

• Λ(0) = Λ(π/2) = Λ(π) = 0

To calculate the volume of an ideal tetrahedron in hyperbolic space, we will first
divide it into simpler pieces called orthosimplices. Let the ideal tetrahedron have
one vertex at ∞ in the upper half space model of H3. The other three vertices then
lie on the circular boundary of a hemisphere on the boundary complex plane of
H3, where we are viewing H3 as H3 = {(x, y, t) | (x, y) ∈ C, t ∈ R, t > 0}. We can
use isometries of H3 to scale and shift this hemisphere such that it has its centre at
0 and has Euclidean radius 1, so that the circular boundary of the hemisphere now
corresponds to the unit circle in C. Let the three vertices now lie at p, q and r on
the unit circle.

Let us first drop a perpendicular from ∞ to the hemisphere; this will be a verti-
cal ray from (0, 0, 1) ∈ H3 to ∞. There are two cases to consider, depending on
whether the point (0, 0, 1) lies in the interior or exterior of the ideal triangle which
makes up the base of our ideal tetrahedron.

Let us first consider the case where (0, 0, 1) lies in the interior of the ideal triangle
which forms the base of the ideal tetrahedron. We will draw perpendicular arcs
from (0, 0, 1) to the three edges of the ideal triangle. We will also draw arc joining
the point (0, 0, 1) to the points p, q and r. Finally, we will cone all these arcs to ∞ -
this will divide the ideal tetrahedron into six simpler pieces called orthoschemes.

Lemma 5.3.1. All the six tetrahedra obtained by the procedure mentioned above have the
following properties:

• They have two finite vertices and two ideal vertices

• Three of their dihedral angles are π/2 and the other three are ζ, ζ and π/2− ζ, for
some ζ ∈ (0, π/2)
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Figure 5.3: Dividing an ideal tetrahedron into orthoschemes

An orthoscheme is depicted in Figure 5.4. Let S(ζ) denote an orthoscheme with
angle ζ which is of the form described by the previous lemma. The volume of an
orthoscheme can be easily calculated by integration.

Proposition 5.3.2 (Volume of an orthoscheme). The volume of an orthoscheme with
angle ζ is given by

vol(S(ζ)) =
1
2

Λ(ζ) (5.4)

Using this formula and the division of an ideal tetrahedron into orthoschemes,
depicted in Figure 5.3, we can easily prove the formula for the volume of an ideal
tetrahedron.

Corollary 5.3.1.1. Among all the hyperbolic ideal tetrahedra, the regular ideal tetrahedron
with all its dihedral angles π/3 has the maximum volume.
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Figure 5.4: An orthoscheme

The volume of the regular ideal tetrahedron is 3Λ(π/3) and we denote this quan-
tity as vtet.

5.4 The volume functional and the space of angle struc-

tures

Given an angle structure on an ideal triangulation τ of a manifold M, we can cal-
culate the edge parameters corresponding to the dihedral angles, using Proposi-
tion 4.2.2. The dihedral angles of an angle structure satisfy constraints which are
equivalent to the corresponding edge parameters satisfying the imaginary part of
Thurston’s edge gluing equations. In this section, we will define a volume func-
tional on the space of all angle structures of a triangulation. We will show that an
interior maxima of this functional on this space corresponds to a set of edge param-
eters which solves both the edge gluing consistency and the gluing completeness
equations. Thus, we will obtain a geometric ideal triangulation of M correspond-
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ing to the triangulation τ and explicitly compute the complete hyperbolic structure
on M.

We will first understand the properties of the parameter space of angle structures
on the triangulation τ, which we denote by A(τ).

Lemma 5.4.1. If A(τ) 6= ∅, then A(τ) is a convex, bounded, finite-sided open polytope
in (0, π)3n ⊂ R3n, where n is the number of tetrahedra in the ideal triangulation τ.

Proof. Any angle structure in A(τ) assigns to each tetrahedron three dihedral an-
gles between 0 and π which correspond to the three pairs of opposite edges in the
tetrahedron. So, we need a total of 3n co-ordinates to describe an angle structure.
Hence, it is clear that A(τ) ⊂ [0, π]3n ⊂ R3n. The equations which define an angle
structure are linear equations whose solution set is an affine subspace of R3n. The
intersection of this affine subspace with [0, π]3n is a bounded, convex, open, finite
sided polytope in R3n.

Definition 5.4.1 (Volume functional on A(τ)). The volume functional ν : A(τ) → R

is defined as

ν(a1, ...., a3n) =
3n

∑
i=1

Λ(ai) (5.5)

Given the dihedral angles of an angle structure, the volume functional gives as output the
sum of the hyperbolic volumes of all the tetrahedra in the triangulation with respect to that
angle structure.

We will now state a few important properties of the volume functional.

Proposition 5.4.1. Let τ be an ideal triangulation of M consisting of n ideal tetrahedra.
The volume functional ν : A(τ)→ R satisfies the following properties:

• ν : A(τ)→ R is strictly concave on A(τ).

• Consider a = (a1, ..., a3n) ∈ A(τ) and let w = (w1, .., w3n) belong to the tangent
space at a ∈ A(τ), that is, w ∈ Ta (A(τ)). Then the directional derivatives of ν in
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the direction w satisfy the relations

∂ν

∂w
=

3n

∑
i=1
−wi log(sin ai) (5.6)

∂2ν

∂w2 < 0 (5.7)

Proof. As w is a tangent vector toA(τ) at the point a, w must satisfy wi(T)+wj(T)+

wk(T) = 0, where i(T), j(T) and k(T) are the co-ordinates of w corresponding to
distinct dihedral angles in a tetrahedron T of τ. This is because the angle structure
a satisfies ai(T) + aj(T) + ak(T) = π. Using the properties of the Lobachevsky func-
tion (Proposition 5.3.1), we can calculate the directional derivatives of the volume
functional at a in the direction of w.

∂ν

∂w
=

3n

∑
i=1
−wi log |2 sin ai|

= − log 2 ∑
T∈τ

(wi(T) + wj(T) + wk(T)) +
3n

∑
i=1
−wi log |sin ai|

=
3n

∑
i=1
−wi log sin ai

The last step follows as wi(T) + wj(T) + wk(T) = 0 for each tetrahedron T ∈ τ. Also,
as ai ∈ (0, π), we know that sin ai > 0.

We will now calculate the second derivative of the volume functional in the direc-
tion of w. We know that ai(T) + aj(T) + ak(T) = π, so at least two of ai(T), aj(T) and
ak(T) must be strictly less than π/2. Let us assume without loss of generality that
for each tetrahedron T, ai(T) and aj(T) are strictly less than π/2. Then, we see that
the second derivative is given by

∂2ν

∂w2 =
3n

∑
i=1
−w2

i cot ai

Now, as ak(T) = π− ai(T)− aj(T) and wk(T) = wi(T)−wj(T), from some trigonomet-
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ric manipulations, we get

w2
k(T) cot ak(T) = (wi(T) + wj(T))

2 cot
(

π − ai(T) − aj(T)

)
= −(wi(T) + wj(T))

2 cot ai(T) cot aj(T) − 1
cot ai(T) + cot aj(T)

Thus, we can rewrite the second derivative of the volume functional ν as

− ∂2ν

∂w2 = ∑
T∈τ

(
w2

i(T) cot ai(T) + w2
j(T) cot aj(T) − (wi(T) + wj(T))

2 cot ai(T) cot aj(T) − 1
cot ai(T) + cot aj(T)

)

= ∑
T∈τ

(wi(T) + wj(T))
2 + (wi(T) cot ai(T) − wj(T) cot aj(T))

2

cot ai(T) + cot aj(T)

The denominator of the last term is strictly positive as both ai(T) and aj(T) belong
to (0, π/2) for all T ∈ τ. The numerator of the last term is a sum of two squares,
hence it must be non-negative. If the numerator is zero, then we must have wi(T) =

−wj(T) and cot ai(T) = − cot aj(T). But as ai(T), aj(T) ∈ (0, π/2), this is not possible.
Thus, both the numerator and denominator of each term in the last summation are
strictly positive, so we see that ∂2ν/∂w2 is strictly negative. Hence, the volume
functional ν is strictly concave on the space of angle structures A(τ).

5.5 Leading trailing deformations

In order to prove Theorem 5.1.2, we shall define special vectors called leading-
trailing deformations given an angle structure a ∈ A(τ) and show that these vec-
tors lie in the tangent space Ta (A(τ)). We shall take the directional derivative of
the volume functional ν along these vectors and relate them with quantities which
arise from Thurston’s gluing equations. This proof of Theorem 5.1.2 follows from
the ideas of Futer and Gueritaud [FG10].

In what follows, M will be homeomorphic to the interior of a compact orientable
3-manifold with torus boundary components and τ will be an ideal triangulation
of M consisting of n ideal tetrahedra.
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Definition 5.5.1 (Leading-trailing deformations). Let C be a cusp of M and consider
the triangulation of the cusp torus induced by the ideal triangulation τ of M. Let α be an
oriented curve on the cusp torus. We can isotope α such that it runs monotonically through
each triangle in the cusp triangulation, such that α enters the triangle from one side, leaves
from another side, and cuts off exactly one vertex of the triangle. Let α1,...,αk be the ori-
ented segments of α in the triangles ti of the cusp triangulation, and suppose the curve α

intersects the cusp triangulation in distinct triangle ti. In the triangle ti, we will call the
vertex opposite the side from which α enters the leading vertex, and the vertex opposite the
side from which α exits the trailing vertex.

For an angle structure a ∈ A(τ), let every vertex of a triangle of the cusp triangulation in-
herit the same dihedral angle as the ideal edge corresponding to that vertex. Thus each ver-
tex of each triangle of the cusp triangulation corresponds to a co-ordinate of A(τ) ⊂ R3n.
Similarly, given a ∈ A(τ), each vertex of each triangle of the cusp triangulation corre-
sponds to a co-ordinate of the tangent space Ta (A(τ)) ⊂ R3n.

We shall define a vector w(αi) ∈ R3n corresponding to the segment αi of α. We set the
co-ordinate of w(αi) corresponding to the leading vertex of ti to be 1, and the co-ordinate
corresponding to the trailing vertex of ti to be −1. We will set all other co-ordinates of
w(αi) to be 0. We will define the leading trailing deformation w(α) corresponding to α by

w(α) = ∑
i

w(αi)

We shall now prove that the leading trailing deformations of certain special curves
which arise from Thurston’s equations belong to the tangent space of A(τ).

Lemma 5.5.1. Let θ be a curve on the cusp torus which encircles a vertex of the cusp
triangulation. Let ζ be a curve on the cusp torus which corresponds to a generator of its
fundamental group. Then the leading trailing deformations w(θ) and w(ζ) both belong to
the tangent space Ta (A(τ)), for any a ∈ A(τ)

Proof. Let fT(a) = ai(T) + aj(T) + ak(T) denote the sum of dihedral angles of the
tetrahedron T for the angle structure a. Let ge(a) = ∑i aei denote the sum of dihe-
dral angles assigned by the angle structure a to the edges ei which are identified
with the edge e of τ. We see from the definition of an angle structure that A(τ)
is a submanifold of R3n which is cut out by the linear equations fT(a) = π and
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Figure 5.5: Calculating the leading trailing deformation vector of the blue curve

ge(a) = 2π for all tetrahedra T and edges e of the triangulation τ. Thus, to prove
that a vector is tangent to A(τ) at the point a, we need to show that it is perpen-
dicular to the gradient vectors ∇ fT(a) and ∇ge(a) for all tetrahedra T and edges e
in the triangulation τ. By using an argument involving the Euler characteristic of
M, we see that the number of tetrahedra in τ is equal to the number of edges in
τ. So, we need to check 2n conditions to show that a vector is tangent to A(τ) at a
point a. We shall use this approach to prove that the leading trailing deformations
of the special curves mentioned in the theorem are tangent to the space of angle
structures.

Let α be one of the curves mentioned in the theorem. We can orient α and homo-
tope it such that it satisfies the conditions imposed in Definition 4.4.1, and ensure
that α intersects each cusp triangle at most once. We see that ∇ fT is the vector
(0, 0, ..., 1, 1, 1, 0, 0, ...., 0) where the only non-zero coordinates are i(T), j(T) and
k(T) corresponding to the tetrahedron T. The tetrahedron T contributes four tri-
angles to the cusp triangulations, and ∇ fT · w(α) depends on how the curve α

runs through the cusp triangulation. Suppose no segment of α meets any of the
four cusp triangles, then w(α) has zeroes in the coordinates corresponding to the
non-zero entries of ∇ fT, so ∇ fT · w(α) = 0 in this case. Now suppose that some
segment αt of α passes through some cusp triangle t of the tetrahedron T. Then
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(a) Assigning the co-ordinates of w(αt) (b) When the non-vertical edge of T which
has +1 in w(αt) is identified to the edge e

Figure 5.6

in the vector w(αt), the leading corner of t will be assigned 1, the trailing corner
will be assigned −1, and the other corner of t will be assigned 0. Thus, in w(αt),
the three co-ordinates corresponding to the three 1’s in ∇ fT are assigned the co-
ordinates +1,−1 and 0, so the dot product∇ fT ·w(αt) = 0. Since w(α) = ∑t w(αt),
we see that ∇ fT · w(α) = 0. Hence, the leading-trailing deformation for the curve
α is orthogonal to the gradient vector ∇ fT for each tetrahedron T in the triangula-
tion τ.

We shall now show that ∇ge · w(α) = 0 for each edge e of the triangulation τ. We
shall consider the contributions to ∇ge · w(α) coming from each segment αt of the
curve α and show that these contributions add up to 0.

Let the segment αt pass through the cusp triangle t in the tetrahedron T. Thus,
w(αt) will assign +1 to the leading corner, −1 to the trailing corner and 0 to the
remaining corner of t, and the coordinates of w(αt) corresponding to these corners
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will be assigned the respective values, as shown in Figure 5.6a. If none of the edges
of the tetrahedron T are identified to the edge e, then ∇ge · w(αt) = 0. Now, sup-
pose the edges of T which are assigned 0 by w(αt) are identified with the edge e,
then∇ge will have +1 or +2 in that co-ordinate, depending on whether one or two
edges in the pair are identified to e. However, ∇ge · w(αt) will still contribute 0 to
∇ge · w(α), as w(αt) has 0 in the corresponding co-ordinates.

Now, consider the case where either one or both the edges of T which are as-
signed +1 by w(αt) are identified to e. Then, w(αt) will contribute +1 or +2 to
∇ge · w(α). We will show that these positive contributions are cancelled by corre-
sponding equal negative contributions coming from other segments.

First, consider the case when the non-vertical edge of T which is assigned +1
by w(αt) is identified to the edge e. This will contribute +1 to the dot product
∇ge ·w(α). Consider the previous segment of α which lies in a cusp triangle t−1 in
the tetrahedron T−1. We denote this segment as αt−1 . As the segment exits the cusp
triangle t−1 and enters the cusp triangle t, it will assign −1 to the trailing corner
of the cusp triangle t−1. We see from the Figure 5.6b that this trailing corner cor-
responds to a vertical edge of the tetrahedron T−1, which is opposite to the edge e.
Hence, w(αt−1) contributes −1 to ∇ge · w(α), cancelling the +1 contribution from
∇ge · w(αt).

Now, let us consider the case where the vertical edge of T which is assigned +1
by w(αt) is identified with the edge e. Again, this will contribute +1 to the dot
product ∇ge · w(α). Let αt, αt+1,..., αt+r be the maximal collection of consecutive
segments of α which follow after αt and belong to cusp triangles adjacent to the
edge e. If the curve α encircles a vertex, then we see that r = 1, that is, there can be
only two consecutive segments in cusp triangles adjacent to the edge e. Suppose α

is a generator for the homology of the cusp torus. Then, r ≥ 1 and the segments
αt,..., αt+r cannot encircle the edge e.

From Figure 5.7, we see that the contribution from the segments αt+1 up to αt+r−1

to the dot product∇ge ·w(α) is 0, since w(αt+k) has 0 in the coordinate correspond-
ing to the edge e for 1 ≤ k ≤ r− 1. As the segment αt+r exits the cusp triangle, we
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Figure 5.7: When the vertical edge of T which has +1 in w(αt) is identified to the
edge e

see that it will assign −1 to the trailing corner of the cusp triangle which actually
corresponds to the edge e of the triangulation. Thus, ∇ge · w(αt+r) contributes −1
to ∇ge · w(α) and cancels the +1 contribution coming from ∇ge · w(αt).

Thus, we see that each +1 contribution by a segment of α to ∇ge · w(α) is can-
celled by a −1 contribution from another segment. As the segment which offers
the cancelling contribution is distinct for different +1 contributions, we deduce
that ∇ge · w(α) ≤ 0. Similarly, we can also show that ∇ge · w(α) ≥ 0. Therefore,
∇ge · w(α) = 0 for each edge e of the triangulation.

We shall now relate the directional derivative of the volume functional ν along
leading trailing deformation vectors to the real part of Thurston’s gluing equations.

Lemma 5.5.2. Let a ∈ A(τ) be any angle structure on the ideal triangulation τ of M. Let
σ be one of the curves θ or ζ from Lemma 5.5.1 and let w(σ) ∈ Ta (A(τ)) be the leading
trailing deformation. Let H(σ) be the complex number associated with α according to
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Definition 4.4.1. Then,

∂ν

∂w(σ)
= Re(log H(σ))

Proof. Let σ1,..., σk be the segments of the curve σ in the cusp triangle t1,...tk. We
label the angles of the triangle ti as αi, βi and γi in the clockwise order such that
the angle αi is cut off by σi. From the Definition 4.4.1, we know

Re(log H(σ)) = ∑
i

εi(log |z(σi)|)

where z(σi) is the edge parameter associated with the edge with the dihedral angle
σi, and εi = +1 if the vertex with angle αi is to the left of the curve σi and εi = −1
if the vertex with angle αi is to the right of the curve σi. From the assignments of
+1 and −1 in the definition of w(σi), we see that when the vertex with angle αi is
to the left of σi, the vector w(σi) has +1 in the coordinate corresponding to βi and
−1 in the coordinate corresponding to γi. When the vertex with angle αi is to the
right of σi, the vector w(σi) has −1 in the coordinate corresponding to βi and +1
in the coordinate corresponding to γi. Then from Proposition 5.4.1, we see that

∂ν

∂w
=

3n

∑
k=1
−wk log sin ak

= ∑
i
−εi log sin βi + εi log sin γi

= ∑
i

εi log
(

sin γi

sin βi

)
= ∑

i
εi(log |z(αi)|)

The last step follows from Proposition 4.2.2. Thus, we have proved the required
relation.

We are now in a position to prove Theorem 5.1.2. We shall show that any critical
point of the volume functional corresponds to a solution of the gluing equations.
As the volume functional ν is strictly concave on A(τ), a critical point of the vol-
ume functional must be the global maximum of the function on A(τ).
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Proof. Given any a ∈ A(τ), we can obtain the edge parameters corresponding
to the dihedral angles of a using Proposition 4.2.2. Now suppose a ∈ A(τ) is
a critical point of the volume functional ν. Then, we shall show that the edge pa-
rameters corresponding to a satisfy Thurston’s edge gluing consistency and gluing
completeness equations. These edge parameters will then describe a complete hy-
perbolic structure on M.

We shall consider the real part and imaginary part of these equations separately.
The definition of an angle structure ensures that the imaginary part of the edge glu-
ing equations are satisfied. Now, as a is a critical point for ν onA(τ), the directional
derivative of ν should be zero in any direction. In particular, let θ be a curve on
the cusp torus which encircles a vertex corresponding to an edge e of the triangu-
lation. Then, as ∂ν/∂w(θ) = 0, using Lemma 5.5.2, we see that Re(log H(θ)) = 0.
So, the real part of the edge gluing equation is also satisfied for each edge e of the
triangulation.

Consider a cusp of the manifold M and let ζ1 and ζ2 be the homology generators
of the cusp torus. Then, we see that ∂ν/∂w(ζ1) = 0 and ∂ν/∂w(ζ2) = 0. Therefore,
we get

Re(log H(ζ1)) = Re(log H(ζ2)) = 0

Therefore, the real part of each of the gluing completeness equations is also satis-
fied.

As the angle structure a satisfies the edge gluing equations, M must have a hy-
perbolic structure which is possibly incomplete. So, the cusp tori will all inherit at
least a similarity structure. Consider the developing image of a fundamental do-
main for a cusp torus of M; it will be a quadrilateral as the cusp torus has an affine
structure. Now, as the real parts of the gluing completeness equations are satisfied,
we see that the holonomy elements ρ(ζ1) and ρ(ζ2) do not scale. Thus, the devel-
oping image of a fundamental domain for the cusp torus is a quadrilateral which
has opposite sides of equal length, which must hence be a parallelogram. Hence,
we see that the holonomy elements ρ(ζ1) and ρ(ζ2) have trivial rotation, that is, the
imaginary part of each of the gluing completeness equations is also satisfied.
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5.6 Converse of the theorem

The converse of Theorem 5.1.2 is also true and can be proved easily using Schlafli’s
formula for hyperbolic ideal tetrahedra. This proof of the converse was given by
Ken Chan in his honours thesis with Craig Hodgson [CH02].

Theorem 5.6.1. Let M be the interior of a compact orientable 3-manifold with torus bound-
ary components. Suppose M is a finite volume complete hyperbolic 3-manifold. Let τ be a
geometric ideal triangulation of M. Let a ∈ A(τ) be the angle structure on the ideal tri-
angulation given by the dihedral angles of the geometric triangulation. Then a is a critical
point of the volume functional ν : A(τ) → R and hence it is the global maximum of the
volume functional on A(τ)

Schlafli’s formula for ideal tetrahedra gives us the variation in the volume of an
ideal tetrahedron given the distance between horospheres centred at its ideal ver-
tices and the variation in its dihedral angles. In this form, this formula was proved
by Milnor [Mil94].

Theorem 5.6.2 (Schlafli’s formula for ideal tetrahedra). Let T be a hyperbolic ideal
tetrahedron. Number the ideal vertices of T and let eij denote the edge running between
the ideal vertices i and j and let θij be the dihedral angle of the edge eij. Choose horospheres
H1,...,H4 centred at the corresponding ideal vertices of T. Let l(eij) be the signed distance
between the horospheres Hi and Hj along the edge eij, where the distance is negative if the
horospheres have non-trivial intersection. Then, the variation in the volume of T is given
by the formula

d vol(T) =
1
2 ∑

i,j
l(eij)dθij (5.8)

We shall now prove Theorem 5.6.1 using Schlafli’s variational formula.

Proof. We know that M is a finite volume complete hyperbolic manifold which
has a geometric triangulation τ given by the angle structure a. As the structure
on M is complete, for each cusp of M, we can make a choice of horospherical
triangle in each ideal tetrahedron meeting the cusp such that the triangles close up
consistently to form a horospherical cusp torus. Using this choice of horospheres,
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we can define the edge lengths l(eij) in each tetrahedron such that edges which are
identified to the same edge of τ have the same edge length.

dν(τ, a) = ∑
T∈τ

d vol T

= ∑
T∈τ

∑
i,j

l(eij)dθij

We can split the summation differently to get

dν(τ, a) = ∑
{e|e is an
edge of τ}

∑
{i|ei is

glued to e}

l(ei)dθi

= ∑
{e|e is an
edge of τ}

l(e) ∑
{i|ei is

glued to e}

dθi

= 0

The last step follows as the sum of dihedral angles of the edges identified to an
edge e of τ add up to 2π, so the variation ∑i dθi is 0. Therefore, we see that the
the complete hyperbolic structure a is a critical point for the volume functional ν,
and it must correspond to the maximum of the volume functional ν, as ν is strictly
concave on A(τ).

5.7 Applications

Casson and Rivin’s programme has been successfully applied to prove that cer-
tain families of 3-manifolds have a complete hyperbolic metric and to find geo-
metric triangulations corresponding to the complete hyperbolic metric on these
manifolds. The basic steps of this programme are as follows:

1. We first consider some ideal triangulation τ of the manifold M, preferably
one which arises naturally from the description of the 3-manifold.

2. We then show that the space of angle structures A(τ) 6= ∅ by finding an
angle structure on τ.
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3. As A(τ) is a compact set, the volume functional ν will achieve a global max-
imum on it. We have to show that this maximum occurs in the interior of
A(τ). For this, we can show that angle structures on the boundary of A(τ)
cannot maximize the volume functional.

This program has been successfully applied by Futer and Gueritaud [FG04] to find
geometric triangulations of 2-bridge knot complements and once-punctured torus
bundles.

Corollary 5.7.0.1 (Lower bounds on volume using angle structures). Suppose we
know that M has an ideal triangulation τ and that there exists a critical point of the volume
functional ν in the interior of A(τ). Let q ∈ A(τ) be any other angle structure. Then we
have the following lower bound for the volume of M.

ν(q) ≤ vol(M)

Equality holds in the above equation if and only if q is the critical point of ν in the interior
of A(τ).

This corollary has been recently used by Champanerkar and Purcell to obtain
lower bounds on the volume of weaving knot complements [CKP16].

We end this section with an open conjecture about angle structures.

Conjecture 5.7.1 (Casson’s conjecture). Suppose M is a finite volume complete cusped
hyperbolic 3-manifold with torus boundary components. Let τ be any topological ideal
triangulation of M. Then ifA(τ) 6= ∅, then the maximum value of the volume functional
on A(τ) is at most the hyperbolic volume of M.

If Casson’s conjecture is true, we will be able to easily obtain good lower bounds
for the hyperbolic volume of cusped hyperbolic manifolds.



Chapter 6

Geometric triangulations of constant
curvature manifolds

We have been studying geometric triangulations of cusped hyperbolic 3-manifolds.
In this chapter, we shall work in the setting of constant curvature compact mani-
folds and understand how geometric triangulations of such manifolds are related
by Pachner moves. This work is due to Tejas Kalelkar and Advait Phanse and we
have borrowed the exposition of this material from their papers [KP19a][KP19b].

6.1 Geometric triangulations of constant curvature man-

ifolds and geometric Pachner moves

We first define geometric triangulations of Riemannian manifolds precisely.

Definition 6.1.1. A geometric triangulation of a Riemannian manifold M is a triangula-
tion of M where each simplex of the triangulation is a totally geodesic disk in the Rieman-
nian metric on M.

If a Pachner move on a geometric triangulation produces a new triangulation
which is again geometric, we call it a geometric Pachner move. We wish to show
that geometric triangulations of constant curvature Riemannian manifolds are re-
lated by geometric Pachner moves. Similar results are known in the case of PL tri-
angulations and smooth triangulations. Pachner proved in his paper [Pac91] that
PL triangulations of PL homeomorphic manifolds are related by Pachner moves,
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which are local combinatorial moves which produce new PL triangulations from a
given PL triangulation. Whitehead [Whi40] proved that smooth triangulations of
diffeomorphic manifolds are related by smooth Pachner moves.

Theorem 6.1.1 (Kalelkar, Phanse). Let K1 and K2 be geometric simplicial triangulations
of a compact constant curvature manifold M with a (possibly empty) subcomplex L with
|L| ⊃ ∂M. When M is spherical, we assume that the diameter of the star of each simplex
is less than π. Then, for some s ∈ N, the s-th derived subdivisions βsK1 and βsK2 are
related by geometric Pachner moves which keep βsL fixed.

For manifolds of dimension 2 and 3, derived subdivisions can be realised by geo-
metric Pachner moves. So we have the following corollary

Corollary 6.1.1.1. Let K1 and K2 be geometric simplicial triangulations of a closed con-
stant curvature manifold M, where the dimension of M is 2 or 3. When M is spherical we
assume that the diameter of the star of each simplex is less than π. Then K1 is related to K2

by geometric Pachner moves.

For cusped hyperbolic manifolds, it is unknown whether a common geometric
subdivision exists for any two geometric simplicial ideal triangulations. This is
because the simplices of one triangulation may spiral into the cusp and possibly
intersect the simplices of another triangulation infinitely many times. We shall dis-
cuss this problem in more detail in the next chapter. But once we have a common
geometric subdivision, we can again relate the two geometric triangulations to the
common subdivision via geometric Pachner moves, up to derived subdivisions.

Theorem 6.1.2 (Kalelkar, Phanse). Let K1 and K2 be geometric simplicial ideal trian-
gulations of a cusped hyperbolic manifold which have a common geometric subdivision.
Then, for some s ∈N, the s-th derived subdivisions βsK1 and βsK2 are related by geomet-
ric Pachner moves.

6.2 Upper bound on Pachner moves relating geomet-

ric triangulations

Given two simplicial triangulations, we wish to understand when they represent
homeomorphic manifolds. Pachner has shown that if two finite simplicial trian-
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gulations of a manifold have a common subdivision, then they must be related by
a finite number of Pachner moves. For any two simplicial triangulations with n1

and n2 simplices, there exists a function F : N×N → N such that the two trian-
gulations are related by less than F(n1, n2) Pachner moves. This is true because
there are only finitely many triangulations for a given fixed number of simplices.
However, this function F may not be computable. The existence of a computable
function F is equivalent to the existence of an algorithm to recognize whether two
triangulations represent homeomorphic manifolds [CL14]. Mijatovic has given
such explicit functions for a large class of 3-manifolds in his papers [Mij04] [Mij05].
These upper bounds are in terms of towers of exponentials in the number of tetra-
hedra in the triangulations.

In this section, we restrict our attention to the special case of geometrically triangu-
lated constant curvature manifolds and try to solve the homeomorphism problem
for them by obtaining an explicit bound on the number of Pachner moves (not
necessarily geometric) required to related two different geometric simplicial trian-
gulations of a constant curvature manifold. The main theorem proved by Kalelkar
and Phanse [KP19a] and the important corollaries that follow from it are repro-
duced below.

Theorem 6.2.1 (Kalelkar, Phanse). Let M be a closed spherical, Eulcidean or hyperbolic
n-manifold with geometric triangulations K1 and K2. Let K1 and K2 have p and q many
n-simplices respectively with the length of edges bounded above by λ and let inj(M) be
the injectivity radius of M. When M is spherical, we require Λ ≤ π/2. Then the 2n+1-th
barycentric subdivisions of K1 and K2 are related by less than 2n(n + 1)!4+3m′ pq(p + q)
Pachner moves which do not remove common vertices. When n ≤ 4, then K1 and K2 are
directly related by 2n(n+ 1)!4+3m pq(p+ q) Pachner moves which do not remove common
vertices. Here m′ = max(2n+1, m) and m is an integer greater than µ log(Λ/inj(M)),
where µ is as follows:

1. When M is Euclidean, µ = n + 1

2. . When M is spherical, µ = 2n + 1

3. When M is hyperbolic, µ = n coshn−1 Λ + 1

For certain low dimensional spherical manifolds and for hyperbolic manifolds of
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dimension greater than 3, whether 2 manifolds are isometric is entirely determined
by whether they are homeomorphic. So, we have an algorithm to check isometry
of these classes of manifolds.

Corollary 6.2.1.1 (Kalelkar, Phanse). Let (M, KM) and (N, KN) be geometrically tri-
angulated closed hyperbolic manifolds of dimension at least 3 or closed spherical mani-
folds of dimension at most 6 and edge length at most π/2. Then M is isometric to N if
and only if the 2n+1-th barycentric subdivisions of KM and KN are related by less than
2n(n + 1)!4+3m′ pq(p + q) Pachner moves followed by a simplicial isomorphism, with m′,
p and q as defined in Theorem 6.2.1.

We can express the injectivity radius in terms of the diameter of M and the volume
of M, so we just need an upper diameter bound and a lower volume bound on M.
These bounds can be obtained if we know a lower bound and an upper bound on
the lengths of the edges of the triangulation. So we have a bound on the number of
Pachner moves required to relate two geometric simplicial triangulations entirely
in terms of bounds on the lengths of edges and the number of simplices in both the
triangulations.



Chapter 7

Geometric ideal triangulations of
cusped hyperbolic manifolds

7.1 Introduction

In this chapter, we wish to investigate whether the simplexes of two geometric
ideal triangulations of an orientable complete finite volume cusped hyperbolic
manifold can intersect each other infinitely many times. To go from one geomet-
ric ideal triangulation of a manifold to another via geometric Pachner moves, we
would like both the geometric ideal triangulations to intersect ‘nicely’, that is, we
would like the polytopal complex formed by the intersection of the two triangu-
lations to have only finitely many polytopes. However, since cusped hyperbolic
manifolds are non-compact, we cannot a priori rule out the case that two ideal sim-
plexes intersect each other infinitely many times. For example, there are two topo-
logical ideal triangulations of the 3-punctured sphere which intersect each other
infinitely many times as one of the simplexes spirals infinitely many times as it
enters the cusps. This is shown in Figure 7.1. We wish to understand if such a phe-
nomenon can occur when the triangulations are geometric ideal triangulations.
The result we prove in this chapter, which is original work, answers this question
in the negative.
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Figure 7.1: Two ideal triangulations of the 3-punctured sphere which intersect each
other infinitely many times

7.2 Background

Let M be an orientable complete finite volume hyperbolic n-dimensional manifold
(where n is 2 or 3). Then, we know that M is either closed (compact and without
boundary) or cusped (homeomorphic to the interior of a compact manifold with
circle or torus boundary components). The thick-thin decomposition also tell us
that the cusp must be homeomorphic to S1 × [0, ∞) when n = 2, and T × [0, ∞)

when n = 3, where T = S1 × S1. In fact, the cusp is isometric to the quotient
of a horoball about ∞ in H2 or H3 by a discrete subgroup of parabolic isometries
which is isomorphic to Z when n = 2, and Z2 when n = 3. This discrete subgroup
is generated by parabolic isometries which act as linearly independent translations
on each horosphere about ∞. Thus, if we denote the horoball by H and the discrete
subgroup by Γ, then the cusp is isometric to H/Γ.

A geometric triangulation of a hyperbolic manifold is a triangulation of the man-
ifold by geometric simplexes - simplexes in which each face is a totally geodesic
submanifold. A singular triangulation which is homeomorphic to the manifold
upon removing the vertices is called an ideal triangulation of the manifold. A
geometric ideal triangulation of a cusped hyperbolic manifold is thus an ideal tri-
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angulation of the manifold where each simplex is totally geodesic.

7.3 Intersection of geometric ideal triangulations

For the rest of this chapter, M will refer to a complete orientable finite volume
cusped hyperbolic manifold of dimension 2 or 3, unless mentioned otherwise. The
main result we prove in this chapter is the following:

Theorem 7.3.1. Let M be a complete orientable finite volume cusped hyperbolic manifold
of dimension 2 or 3. Let τ1 and τ2 be two distinct geometric ideal triangulations of M.
Then the polytopal complex which is formed by the intersection of τ1 and τ2 has only
finitely many polytopes.

For the sake of clarity, we will first define a few terms that we use throughout the
chapter.

Definition 7.3.1. Let M be an n-manifold (where n is 2 or 3) homeomorphic to the interior
of a compact manifold M̂ with circle or torus boundary components. Then the intersection
of a collar neighbourhood of a boundary component of M̂ with M is said to be a cusp
neighbourhood of M. Thus, a cusp neighbourhood of M is homeomorphic to S1 × (0, ∞),
when n = 2, and to T × (0, ∞), when n = 3. The boundary of the cusp neighbourhood
corresponds to S1 × {0}, when n = 2, and to T × {0}, when n = 3. A cusp C of M is a
collection of cusp neighbourhoods about a particular boundary component of M̂, and any
cusp neighbourhood in this collection is called a neighbourhood of the cusp C.

Definition 7.3.2. Let M be a complete orientable finite volume cusped hyperbolic n-manifold
(where n is 2 or 3). We say that a geodesic ray γ : [0, ∞) → M converges to a cusp C of
M, if given any neighbourhood of the cusp C, there exists some t0 ∈ [0, ∞), such that for
t > t0, γ(t) lies within the given neighbourhood of the cusp. We say a geodesic converges
to a cusp C of M if one end of it is a geodesic ray which converges to C.

Note that each end of a geodesic ideal edge of a geometric ideal triangulation must
converge to some cusp of M. This is because the manifold M is homeomorphic to
the complement of the vertices in the cell complex K obtained by identifying the
simplexes of the singular triangulation, and the cusp neighbourhoods thus corre-
spond to neighbourhoods of the vertices of K.
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Lemma 7.3.1. Consider a finite set S of geodesic rays converging to a cusp C of M. Then
there exists an ε > 0 such that these geodesic rays intersect the ε-thin neighbourhood of
the cusp C in parallel geodesic rays which converge to the cusp C.

Proof. From the thick thin decomposition, we see that the εn-thin neighbourhood
of the cusp C is the quotient of a horoball in Hn by parabolic isometries (where n
is 2 or 3 and εn is the corresponding Margulis constant). Lift this cusp neighbour-
hood to a horoball H about ∞ in Hn. Let γ : [0, ∞)→ M be one of the geodesic rays
in the set S under consideration. We claim that γ intersects the εn-thin neighbour-
hood of the cusp C in components which are either finite length geodesic segments
with endpoints on the cusp boundary or geodesic rays which converge to the cusp.
If a component of γ is perpendicular to the horospherical boundary of the cusp, it
must lift to a vertical geodesic ray in Hn perpendicular to the horospherical bound-
ary of H. If a component of γ is not perpendicular to the horospherical boundary
of the cusp, it will lift to a segment of a semicircular geodesic in Hn, that is, it must
be a finite length geodesic segment with endpoints on the cusp boundary.

Also, we claim that γ can only intersect the cusp neighbourhood in a finite number
of components. As γ converges to the cusp C, there exists a t0 > 0, such that γ(t)
lies in the cusp neighbourhood for t > t0. So the component of intersection of γ

given by γ|(t0,∞) will lift to a vertical geodesic ray perpendicular to the horospheri-
cal boundary of H. As the remaining portion of γ given by γ|[0,t0] is of finite length,
γ will intersect the cusp neighbourhood only in finitely many geodesic segments,
which lift to a finite number of semicircular geodesic segments in the horoball H.
It is clear that these segments only penetrate the cusp neighbourhood up to a finite
depth, that is the semicircular geodesic segments all lie below a certain height in
Hn.

Thus, we can choose an εγ < εn small enough such that the εγ-thin neighbourhood
of the cusp C avoids all the segments of γ, that is, it lifts to a horoball in Hn which
is high enough that it avoids the semicircular geodesic segments in the lift of γ.
Let εS = min{εγ | γ ∈ S}. Then, the finite set of geodesic rays will intersect the
εS-thin neighbourhood of the cusp C in parallel geodesic rays which converge to
the cusp C.
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Corollary 7.3.1.1. Let τ1 and τ2 be two distinct geometric ideal triangulations of M. Then,
there exists an ε (which depends on τ1 and τ2), such that the geodesic ideal edges of τ1 and
τ2 will intersect any cusp neighbourhood contained in the ε-thin part of M only in parallel
geodesic rays converging to the cusp.

Lemma 7.3.2. Let ε be a Margulis number for M, that is, the ε-thin part of M decomposes
as per the thick-thin decomposition. Then, the intersection of any geodesic ideal edge of a
geometric ideal triangulation of M with the complement of the ε-thin part of M is a finite
collection of geodesic segments each of finite length.

Proof. Without loss of generality, we can lift the geodesic ideal edge to a vertical
geodesic in Hn such that its endpoints are at 0 and ∞. The ε-thin cusp neigh-
bourhood in M will lift to disjoint horoballs about 0 and ∞ in Hn. Suppose these
horoballs intersect the geodesic at heights a and b, where a < b. Then, the length
of the geodesic ideal edge which lies in the complement of the ε-thin part of M is
less than the length of the lifted geodesic between the height a and b. This is true
because the quotient map is a local isometry, and hence preserves the length of
geodesics which do not close up in the quotient. A simple calculation shows that
the length of the lifted geodesic between height a and b is ln(b/a), which is finite.
So, the intersection of the geodesic ideal edge with the complement of the ε-thin
part of M is also of finite length, and hence it must consist of a finite collection of
geodesic segments each of finite length.

Lemma 7.3.3. Two finite length geodesic segments in a compact Riemannian manifold
cannot intersect infinitely many times. In particular, if ε is a Margulis number for M,
then any two finite length geodesic segments in the complement of the ε-thin part of M
cannot intersect infinitely many times.

Proof. Let α : [0, 1] → Mc and β : [0, 1] → Mc be two finite length geodesic seg-
ments in the complement of the ε-thin part of M, which is a compact manifold
Mc. Suppose they intersect each other infinitely many times. For each intersection
point, let sn be a point in the interval which maps to that point under α, and simi-
larly let tn be a point in the interval which maps to it under β. Now, since α and β

intersect each other in infinitely many points, we will have infinitely many distinct
preimages sn and tn. As the interval is compact, any infinite set must have a limit
point. Let s be a limit point of the set sn and pass to a subsequence of sn which
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converges to s, which we denote again by sn. Let tn be such that α(sn) = β(tn).
Again, there exists a subsequence of tn which must converge to a limit t. So, fi-
nally, we pass to a subsequence of both sn and tn such that sn → s and tn → t and
α(sn) = β(tn).

Now, due to continuity of α and β, we will have α(s) = β(t). Let us denote this
point in M as x. Thus, x is also a point of intersection of α and β. Now, as Mc

is a compact Riemannian manifold, the global convexity radius of Mc is positive
and is less than or equal to half of the global injectivity radius of Mc (this follows
from results by Dibble and Klingenberg and is proved in Lemma 3.12 in [KP19a]).
Denote this global convexity radius by r(M). Then a ball of radius r(M) around
x must be strongly convex, that is, any two points in this ball can be joined by a
unique geodesic segment which lies entirely within the ball. Denote this ball by
B. Then we see that α−1(B) contains a small neighbourhood (s − δ, s + δ) of the
point s, and similarly β−1(B) contains a small neighbourhood (t− δ, t + δ) of the
point t. Choose a k large enough so that sk ∈ (s− δ, s + δ) and tk ∈ (t− δ, t + δ),
so that α(sk) = β(tk) = x0 ∈ B. Now, α|[sk,s] and β|[tk,t] are two distinct geodesic
segments joining x0 and x, as if they were to coincide, α and β would have to be
the same geodesic, due to Picard’s theorem. Thus, α|[sk,s] and β|[tk,t] are two distinct
geodesic segments joining x0 and x, which lie entirely in the ball B, contradicting
the fact that B is a strongly convex ball. So, two finite length geodesic segments in
a compact Riemannian manifold cannot intersect each other infinitely many times,
proving the desired result.

Combining the results from all the previous lemmas, we have shown

Proposition 7.3.1. Let τ1 and τ2 be two distinct geodesic ideal triangulations of M. Then,
two geodesic ideal edges of τ1 and τ2 cannot intersect infinitely many times.

This is sufficient to prove Theorem 7.3.1 for the case when M is 2-dimensional, be-
cause if two ideal triangulations of a surface intersect infinitely many times, there
must be two ideal edges which intersect infinitely many times. The same argument
can be used to prove the following corollary to Lemma 7.3.3.

Corollary 7.3.1.2. Let τ1 and τ2 be two geometric triangulations of a compact Riemannian
manifold M, where M is a 2-dimensional manifold. Then, τ1 and τ2 cannot intersect each
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other in infinitely many polygons.

To prove the theorem for the case when M is a 3-manifold, we need to do a little
more work.

Lemma 7.3.4. Let M be a complete orientable finite volume cusped hyperbolic 3-manifold.
Let τ1 and τ2 be two distinct geometric ideal triangulations of M. Then, there exists an
ε > 0, such that τ1 and τ2 cannot intersect each other infinitely many times in the ε-thin
part of M.

Proof. By Corollary 7.3.1.1, we can choose an ε small enough such that M<ε will
be a disjoint union of distinct cusp neighbourhoods such that ideal edges of both
τ1 and τ2 intersect them only in parallel geodesic rays converging to the cusp. Lift
the ε-thin neighbourhood of one of these cusps to a horoball about ∞ in H3 and lift
the tetrahedra meeting this cusp to vertical ideal tetrahedra in H3. Then, we can
also make sure that ε is small enough so that the ε-thin cusp neighbourhood lifts
to a horoball in H3 which is high enough that it avoids all the bottom faces of the
vertical tetrahedra. Thus, we can choose ε to make sure that this property holds
for all cusps of M.

Consider the boundary torus of the ε-thin cusp neighbourhood of one of the cusps
in M. It has a Euclidean structure induced by the hyperbolic structure on M, as
it is the quotient of a horosphere in H3. Thus, the boundary torus has Euclidean
triangulations τ1 and τ2 which are induced by the triangulations τ1 and τ2. The
intersection of the ideal tetrahedra with the cusp neighbourhood is entirely deter-
mined by the triangulation induced on the boundary torus. The triangulation τi

intersects the cusp neighbourhood in a cell complex, where each cell is the product
of a triangle of τi with [0, ∞). Thus, the tetrahedra of τ1 and τ2 intersect each other
in the cusp in the same number of components as the triangles of τ1 and τ2 intersect
each other. However, as the boundary torus is a compact Euclidean 2-manifold, by
Corollary 7.3.1.2, τ1 and τ2 can only intersect each other in finitely many polygons.
Thus, τ1 and τ2 intersect each other only finitely many times in the ε-thin neigh-
bourhood of each cusp in M. Hence, τ1 and τ2 cannot intersect each other infinitely
many times in the ε-thin part of M.

Lemma 7.3.5. Let M be a complete orientable finite volume cusped hyperbolic 3-manifold.
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Let τ1 and τ2 be two distinct geometric ideal triangulations of M. Then, τ1 and τ2 cannot
intersect each other infinitely many times in the thick part Mc, the complement of the
ε-thin part of M.

Proof. The triangulations of M induce a cell structure on Mc in which each cell is
a truncated tetrahedron. If, τ1 and τ2 intersect each other infinitely many times
in Mc, then there must be two truncated tetrahedra which intersect each other in-
finitely many times, and hence there must be two two truncated triangular faces C
and D which intersect each other in infinitely many connected components. Let X
be a truncated triangle and let φ : X → C and ψ : X → D be the maps induced by
the triangulation of the manifold M. We will follow a strategy similar to the one
adopted in the proof of Lemma 7.3.3 to end up with a contradiction.

Choose a point xn corresponding to each connected component of the intersection
of C and D. Consider the preimage of these points under φ and ψ and call them
sn and tn respectively. Since we have infinitely many distinct preimage points,
they must have a limit point, as X is compact. As in the proof of Lemma 7.3.3,
we can pass to a subsequence of both sn and tn such that sn → s and tn → t
and φ(sn) = ψ(tn). Now, due to continuity of φ and ψ, we will have φ(s) = ψ(t).
Let us denote this point in M as x. Thus, x is also a point of intersection of C and D.

Consider a ball B(x, r) around x of radius r less than the global convexity radius
r(M) (which is positive as M is compact). We can assume that x does not belong
to the same connected component as any other xn that lies in this ball, because, if
it does, we can consider a ball of smaller radius around x such that this property is
satisfied. Now, as C and D are truncated geodesic faces, they are totally geodesic
submanifolds, and B(x, r) ∩ C and B(x, r) ∩ D are disks of radius r around x con-
tained in the faces C and D. Also, r is less than the global convexity radius of
both C and D as they are both totally geodesic. Thus, B(x, r) ∩ C and B(x, r) ∩ D
are convex disks. Consider an intersection point x0 which belongs to the sequence
xn and lies in the ball B(x, r) (such an x0 exists as xn → x). Thus, x0 belongs to
both B(x, r) ∩ C and B(x, r) ∩ D. Now, there exists a geodesic segment joining x0

to x in the face C which lies in the disk B(x, r) ∩ C and another geodesic segment
joining x0 to x in the face D which lies in the disk B(x, r) ∩ D. These two geodesic
segments are distinct, otherwise the segment would be a subset of a component of
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intersection of C and D, but we have chosen x0 and x from distinct connected com-
ponents. The existence of two distinct geodesic segments joining x0 and x within
the ball B(x, r) contradicts the fact that the ball is strongly convex. Hence, the two
truncated faces C and D cannot intersect in infinitely many connected components,
and therefore, neither can the truncated triangulations.

From Lemma 7.3.4 and Lemma 7.3.5, it clearly follows that two distinct geomet-
ric ideal triangulations of a complete finite volume orientable cusped hyperbolic
3-manifold M cannot intersect infinitely many times. Following the proof of Theo-
rem 6.1.2 in [KP19b], we can show that two distinct geometric ideal triangulations
of a complete finite volume orientable cusped hyperbolic 3-manifold M are related
by geometric Pachner moves.
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Chapter 8

Conclusion

We have studied the rich interplay between hyperbolic geometry, knot theory and
3-manifolds in this thesis. In the last chapter, we have proved that there are only
finitely many polytopes in the intersection of two geometric ideal triangulations
of a cusped hyperbolic 3-manifold. Thus, any two geometric ideal triangulations
of a cusped hyperbolic 3-manifold have a common geometric subdivision with a
finite number of polytopes. Thus, geometric triangulations of cusped hyperbolic 3-
manifolds are related by geometric Pachner moves. In the future, we would like to
extend this result and obtain an upper bound on the number of polytopes in the in-
tersection of two geometric ideal triangulations of a cusped hyperbolic 3-manifold.
We would like to use this bound to obtain an upper bound on the number of Pach-
ner moves required to go between two geometric ideal triangulations of a cusped
hyperbolic 3-manifold, following the technique developed in [KP19a].
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