
IISER PUNE LECTURES ON DIFFERENTIAL GEOMETRY (LECTURES 5 AND 6)

1. An introduction to the ideas behind the proof of Kodaira embedding - The ∂̄ equation

For every pair of two points p, q in X, suppose we manage to find a holomorphic section s (that
obviously depends on p and q) with a given first-order Taylor expansion, i.e., if we are given two
vectors u1,u2 ∈ Lp,Lq respectively and two vectors ~v1, ~v2 ∈ Lp ⊗ T∗X,Lq ⊗ T∗X respectively then we
find a global holomorphic section s of Lk for a fixed but sufficienty large k such that s(p) = u1, s(q) = u2

and ∇s(p) = ~v1,∇s(q) = v2 where ∇ is the Chern connection of the metric hk on Lk having positive
curvature. (Actually, choose local trivialisations such that the Chern connection is d at p, q in these
trivialisations.) Also, define a Kähler metric on the tangent bundle of X given by the curvature of h
on L.

If such is the case, then I claim that we have enough number of sections to ensure that the Kodaira
map p→ [s0(p) : s1(p) : . . . : sN(p)] is actually an embedding. Indeed,

(1) Well-definedness : For every point p, if u1 , 0, then s(p) = u1 , 0. Thus the map makes sense
(i.e. nothing gets mapped to the absurd [0 : 0 : 0 . . .]).

(2) Injectivity : If p , q, and u1 = u2, if si(p) = si(q) ∀ i, then s(p) = s(q) – A contradiction.
(3) The derivative is injective : Suppose it is not so at a point p. Assume without loss of generality

that s0(p) , 0. So we are in a coordinate patch U0 in CPN. Thus the map in local coordinates
(after choosing coordinates z j in X such that p is at the origin) That is, there exists a tangent
vector v , 0 ∈ TpX such that ∑

j

∂(si/s0)
∂z j

v j = 0 ∀ i.(1.1)

Now using the assumptions above, choose a section s such that s(p) = 0 and ∇s(p) = vs0(p)
where we chose a local trivialisation such that the Chern connection is d at p and complex
coordinates z such that the Kähler metric ω at p is standard. (Thus we can pretend that ~v is a
cotangent vector even though it is actually a tangent vector.)

Now we calculate ∑
j

∂(s/s0)
∂z j

v j =
∑

j

v2
j > 0.(1.2)

But

s = s0c0 +
∑

i

cisi

⇒

∑
j

∂(s/s0)
∂z j

v j = 0 +
∑

i

ci

∑
j

∂(si/s0)
∂z j

v j = 0.(1.3)

This is a contradiction.

Hence, our problem has now been reduced to finding a k >> 0 such that Lk admits holomorphic
sections with specified first order Taylor expansions at any two given points.
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Exercise 1.1. Prove that there are smooth (but not necessarily holomorphic) globally defined sections having
specified first order Taylor expansions that are holomorphic in small coordinate neighbourhoods of p and q and
supported on slightly bigger coordinate neighbourhoods.

So really, our problem is to find holomorphic sections that do the job given that we can find smooth
sections doing them. Suppose s̃ is such a smooth section. Then η = ∂̄s̃ , 0 at some places on the
manifold (if it were 0 everywhere, then s̃ is holomorphic and we are done). If we can magically
solve the PDE ∂̄t = η with the restriction t(p) = t(q) = dt(p) = dt(q) = 0 then s = s̃ − t does the job!

So how does one solve ∂̄t = η for any η satisfying ∂̄η = 0 with the restriction that t has 0 first order
Taylor expansion at two given points ? This is a rather weird boundary condition. In PDE theory,

it is more reasonable to require, say,
∫

X
e−φ|t|2hvol < ∞ if

∫
X |η|

2e−φvol < ∞ for a given “weight”

function φ. Formally speaking, suppose we choose the weight function φ to behave like ln |z|2n+1

(where 2n is the real dimension of X) near p and q (where p, q are the origins of the coordinate
systems) then the integral being finite forces t to vanish upto the first order.

In other words, we hope to be able to solve ∂̄t = η where ∂̄η = 0 and η satisfies
∫

X |η|
2e−φvol < ∞,

such that the solution t satisfies
∫

X
e−φ|t|2hvol < ∞ for any smooth function φ. (Granted that ln |z|k is

not smooth, but it can be approximated by k
2 ln(|z|2 + ε2) which are smooth.) It is precisely to solve

this PDE that we need positive and large curvature.

Where does curvature feature into solving a PDE ? The point is the following : A linear PDE like
∂̄t = η can be abstractly thought of as a problem in functional analysis. Namely, given a (closed,
densely-defined) linear operator T : H1 → H2 between two Hilbert spaces, for a given v ∈ H2,
find u ∈ H1 (if possible) such that Tu = v. Suppose we can solve this problem. Then, taking
inner product with w ∈ Dom(T†) on both sides, we see that 〈T†w,u〉 = 〈w, v〉. This means that
〈w, v〉 ≤ ‖T†w‖‖u‖ ≤ C‖T†w‖. Conversely, it may be proven that if we can show ‖T†w‖ ≥ C‖w‖, then
indeed there exists a solution u to the problem described above with ‖u‖ ≤ C (we are denoting all
arbitrary constants by C. They are not equal to each other!)

The quest to prove an estimate of the type ‖∂̄†w‖L2 ≥ C‖w‖L2 is what brings curvature into the
picture. More precisely, the operator ∂̄†w is a first order differential operator acting on (0, 1)-forms w
having a simple formula (it is akin to the divergence of a vector field). Now just like∇.∇ = ∆, we can
form a Laplacian (called the Hodge-Dolbeault Laplacian) ∆1 = ∂̄∂̄†+ ∂̄†∂̄. But there is another choice
of a Laplacian (called the rough Laplacian) given by ∆2 = ∇̄∗∇̄. These two Laplacians differ by a
curvature term : ∆1 = ∆2 + Curvature. Thus w∆1w = w∆2w + Curvature(w,w). Integrating-by-parts,
it turns out that ‖∂̄w‖2 + ‖∂̄†w‖2 = ‖∇̄w‖2 +

∫
Curvature(w,w) ≥

∫
Curvature(w,w). Now the problem

is set up such that ∂̄w = 0. Thus, if the curvature is strictly positive, indeed the desired estimate
holds. Since this the curvature of e−φhk, k has to be large enough so that the positive term dominates
the potential negative contributions of the other terms.

Let us make this strategy slightly more rigorous in the special case of Riemann surfaces. The
point is that when g ≥ 2, it turns out that the holomorphic cotangent bundle T1,0X∗ is ample (i.e. it
admits a metric of positive curvature). In the case of g = 0, the tangent bundle T1,0X is itself ample.



IISER PUNE LECTURES ON DIFFERENTIAL GEOMETRY (LECTURES 5 AND 6) 3

In the g = 1 case, finding an ample line bundle requires a little bit more work (although in this case
one can prove the embedding theorem directly using the Weierstrass ρ function). So suppose we
are given a Riemann surface X with an ample line bundle (L, h). Given any two points p, q ∈ X, we
will prove that there exists a holomorphic section s with given first order taylor expansion at p, q.
Here is a theorem of Hörmander stated in this special case.

Theorem 1.2. Suppose (X, ω) is a Riemann surface whose T1,0X is equipped with a hermitian metric whose
associated 2-form is ω, and (L, h̃) is a hermitian holomorphic line bundle. Suppose the curvature of ω is the
2-form Θω (the Gaussian curvature essentially) and that of h is Θh. Let η be a smooth (0, 1)-form that is
∂̄-closed, i.e., ∂̄η = 0. Assume that

√
−1
2 Θω +

√
−1
2 Θh ≥ cω where c > 0. Then there exists a smooth section t

of L satisfying ∂̄t = η and ∫
X
|t|2

h̃
ω ≤

1
c

∫
X
|η|2hω(1.4)

Remark 1.3. The same statement as above holds on higher dimensional complex manifolds (except
that the curvature term coming from the manifold’s Kähler metric is the Ricci curvature).

We shall not prove this theorem. But we shall indicate how this implies the Kodaira embedding
theorem (for Riemann surfaces). Firstly, here is a simple exercise :

Exercise 1.4. Prove that every metric on a Riemann surface is Kähler.

Secondly, assuming theorem 1.2, let us see how to prove our main theorem - Kodaira embedding.
Given two points (p, q) and coordinate systems zp and zq around p, q such that these points are the
origin and such that the Kähler metric is standard upto the first order in these coordinates, and first
order taylor expansions (in a trivilisation where the metric on the line bundle is standard upto the
first order) u1 + zpv1, u2 + zqv2, let φε = 3

2ρ1 ln(|zp|
2 + ε2) + 3

2ρ2(|zq|
2) ln(|zq|

2 + ε2) be a smooth function
on X where ρ1 = ρ(|zp|

2), ρ2 = ρ(|zq|
2), and ρ : R → R is a smooth non-negative function whose

support is in (− 1
2 ,

1
2 ) and is equal to 1 on [− 1

4 ,
1
4 ]. Let h̃ε = hke−φ be a new metric on Lk. Its curvature

(multiplied by
√
−1
2 ) is

√
−1
2

Θh̃ε = k

√
−1
2

Θh +

√
−1
2

∂∂̄φε

= kΘh + ln(|zp|
2 + ε2)

3
√
−1

4
∂∂̄ρ1 + ln(|zq|

2 + ε2)
3
√
−1

4
∂∂̄ρ2 +

3
√
−1

4
∂ρ1

zp ¯dzp

|zp|2 + ε2 +
3
√
−1

4
z̄pdzp

|zp|2 + ε2 ∂̄ρ1

+
3
√
−1

4
∂ρ2

zq ¯dzq

|zq|2 + ε2 +
3
√
−1

4
z̄qdzq

|zq|2 + ε2 ∂̄ρ2 +
3
√
−1

4
ρ1

ε2dzpdz̄p

(|zp|2 + ε2)2 +
3
√
−1

4
ρ2

ε2dzqdz̄q

(|zq|2 + ε2)2 .(1.5)

Noting that dρ1 = dρ2 = 0 in a small neighbourhood of p, q, we see that the above expression is ≥ cω
for c > 0 (independent of ε) if k is large enough (but independent of ε).

Now by exercise 1.1 there exists a smooth section s̃ having the correct Taylor expansion and is
holomorphic in small neighbourhoods of p, q. Thus we may assume that ∂̄s̃ = η = 0 on the small

regions where ρ1 = 1 and ρ2 = 1. Thus
∫

X
|η|2hεω < C where C is independent of ε. By Hörmander’s

theorem, there exists a smooth section tε satisfying ∂̄tε = η and∫
X
|tε|2hω ≤

∫
X
|tε|2he−φε=0ω ≤

∫
X
|tε|2he−φεω < C(1.6)



4 IISER PUNE LECTURES ON DIFFERENTIAL GEOMETRY (LECTURES 5 AND 6)

where C is independent of ε. At this point some fancy PDE theory (you can mumble phrases like
“elliptic regularity”, “Sobolev embedding”, and “Arzela-Ascoli”) takes over to tell us that indeed
there is a smooth solution ∂̄t = η satisfying∫

X
|t|2he−φε=0ω < C(1.7)

Exercise 1.5. Prove that equation 1.7 implies that t vanishes to the first order at p and q.

2. In general, what are smooth vector bundles and why should you care ?

There are two ways of coming up with examples of simple closed curves. One is to write it as
the image of a path ~γ : [0, 1] → R2 with non-zero derivative and another is to write it as the zero
locus of a function F(x, y) such that ∇F , 0 on the zero locus (i.e. (cos(2πt), sin(2πt)) and x2 + y2 = 1).
A natural question is “Can every compact, connected, 1-dimensional submanifold of the plane be
described in both of these ways ?” The answer is YES. (BTW if you require the “path” to be a complex
analytic function on the upper half-plane, and the function F to be complex analytic in a sense, then
this version is related to the Uniformisation theorem of Riemann surfaces.)

Exercise 2.1. Prove that indeed every compact, connected 1-dimensional submanifold of the plane can be
written as the image of a path with non-zero derivative everywhere, and also as the zero locus of a function
whose gradient when restricted to the submanifold is non-zero. (Hint : Use the classification of 1-manifolds)

Another question is “Is every k-dimensional closed submanifold of Rn the zero locus of n − k
functions whose derivatives are linearly independent when restricted to the submanifold ?” The
answer is NO in general. Indeed, how would we hope to attack such a problem ? For one thing,
if it is the zero locus of such functions f1, . . . , fn−k, then there are n − k independent vectors at each
point on the submanifold that are perpendicular to it.

Exercise 2.2. Using the above observation, come up with a counterexample. (Hint : Look at exercise 8)

The above being said, we can surely find such functions locally (because there are local normal
vector fields). The difficulty seems to be finding them globally because the local functions do not
agree on the intersections of open sets. This seems to be intimately tied to the problem of finding
n − k independent global normal vector fields.

Exercise 2.3. Prove that if the closed submanifold M has dimension n − 1 and has 1 independent normal
vector field on it, then indeed there is 1 function defining it having non-zero gradient on M. (I do not know if
this is the case if you replace 1 with k. There is a mathoverflow question on this, but no consensus.)

If you think about the above question enough, you will find that while the local functions do not
patch up to form global functions to Rn−k, they do form global functions to a different manifold
which we shall call “The total space of a vector bundle” (this particular vector bundle is called the
normal bundle). (In fact, if you have seen vector bundles earlier, then know this : Every real vector
bundle is secretly the normal bundle of some appropriately chosen submanifold of RN for N large
enough. So why should you care about vector bundles ? To solve the above problem.) Indeed, this
“total space of a vector bundle” is locally of the form U×Rn−k where U is an open set of the manifold
M the local functions ~fU(x) are such that ~fU(x) = gUV(x) ~fV(x) for some invertible n − k × n − k matrix
of real-valued functions gUV(x) on U ∩ V. These matrices satisfy gVU = g−1

UV and gUV gVW gWU = I.
So,
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Exercise 2.4. Prove that the following topological space is in fact a smooth manifold

V =
∪αUα ×Rr

(p, vα) ≡ (p, gαβ(p)vβ)

where Uα are an open cover of a smooth manifold M, and gαβ : Uα∩Uβ → GL(r,R) are smooth r×r invertible
matrix-valued functions on Uα ∩Uβ satisfying gαβ = g−1

βα and gαβgβγgγα = I on Uα ∩Uβ ∩Uγ. Also prove
that there is a map π : V →M such that π−1(p) (the “fibre” of p) is a vector space of dimension r and that for
every point p, there is an open neighbourhood Np in M such that π−1(Np) is diffeomorphic to Np ×Rr (whilst
being compatible with the projection map π) with the diffeomorphism being linear on the fibres.

The above manifold V is called a real vector bundle of rank r with transition functions gαβ. If you
have seen vector bundles earlier, you would’ve seen a seemingly different definition :

Definition 2.5. A real rank-r vector bundle V over a smooth manifold M is a smooth manifold
equipped with a projection map π : V → M such that for every point p ∈ M, the inverse image (the
“fibre”) π−1(p) is a real vector space Vp of dimension r. Moreover, around every point p ∈M there is
an open neighbourhood Np such that π−1(Np) is diffeomorphic to Np×Rr that respects the projection
and such that the diffeomorphism being a linear isomorphism on the fibres. Such a diffeomorphism
on Np is called a local trivialisation.

We also need a notion of a map between two vector bundles (for a category, you need objects and
morphisms) :

Definition 2.6. Suppose V and W are vector bundles over M with projections π1 and π2. Then a
smooth function f : V →W is called a vector bundle morphism/map if π1 = π2 ◦ f and f is a linear
map when restricted to the fibres.

If f has an inverse which is also a vector bundle map, then f is said to be an isomorphism of
vector bundles. (That is, V and W are practically the same objects in disguise.)

Definition 2.7. A section s : M→ V of a vector bundle is a smooth map such that π ◦ s = Id.

Exercise 2.8. Prove that the two definitions of vector bundles given above, agree. (First make this statement
precise and then prove it.)

How does one construct vector bundles ? Well, one way is to embed your manifold in RN and
take the normal bundle (i.e. the subset N ⊂M ×RN containing (p, v) such that v is perpendicular to
the tangent vector at p of any curve lying on M, passing through p.

Exercise 2.9. Prove that this is a vector bundle).

As I said earlier, you can prove (using the Whitney embedding theorem) that every real vector
bundle arises this way. But we need more concrete constructions. So here are ways to construct
bundles from already existing ones V and W with transition functions g and h (how do you come
up with already existing ones ? more on this later).

(1) V∗ is the dual vector bundle whose fibres are the duals of Vp and whose transition functions
are (g−1

αβ)T.
(2) V ⊕W is a vector bundle whose fibres are the direct sums of the vector spaces and whose

transition functions are
[

gαβ 0
0 hα

]
(the direct sum of the matrices).



6 IISER PUNE LECTURES ON DIFFERENTIAL GEOMETRY (LECTURES 5 AND 6)

(3) V⊗W is a vector bundle whose fibres are tensor products of the vector spaces and whose tran-

sition functions are the Kronecker product of the matrices g and h, i.e.,


g11
αβhαβ g12

αβhαβ . . .

g22
αβhαβ g22

αβhαβ . . .
...

. . . . . .


(4) Suppose f : N → M is a smooth map then f ∗(V) (called the “pullback of V”) is a vector

bundle over N with the same fibres but with transition functions f ∗gαβ = gαβ ◦ f . (In fact,
it is a non-trivial result that any map homotopic to f induces the same pullback on vector
bundles. An even more non-trivial result is that every smooth vector bundle is the pullback
of a standard vector bundle over a standard manifold called a Grassmannian.)

(5) det(V) is a line bundle whose transition functions are det(gαβ).
Here are some examples of vector bundles :

(1) Given any manifold, here is a stupid vector bundle of rank r = M×Rr. This is called a trivial
bundle.

Exercise 2.10. Prove that a rank-r vector bundle is trivial if and only if there are r smooth sections si
such that si(p) are form a basis of the fibre Vp at every point p ∈M.

(2) Recall that a vector bundle of rank 1 is called a line bundle. We will deal mainly with line
bundles later on. There are very nice ways to construct line bundles in algebraic geometry.
But there is a cute elementary construction : The infinite Möbius strip can be thought of as a
line bundle over a circle.

Exercise 2.11. Prove the Möbius strip is a line bundle over a circle. Is it at trivial line bundle ?

(3) The Tangent bundle of a manifold is a nice example : Suppose M ⊂ RN, then the tangent
bundle TM ⊂ M ×RN given by (p, v) such that v is the tangent vector at p to a curve γ lying
on M passing through p. Another way to define TM is as follows : Suppose Uα is an atlas on
the n-dimensional manifold M with transition functions xα = ψαβ(xβ). Then TM is given by

local trivialisations of the form Uα ×Rn with transition functions gi j
αβ =

∂xi
α

∂x j
β

.

Lastly, the definitions above also make sense if you replace R with C. Such bundles are called
complex vector bundles. We will deal largely complex vector bundles. (How do you construct
complex vector bundles ? One potential way is to take a real vector bundle and “complexify” it, i.e.,
pretend that the transition functions are matrices of complex numbers instead of real. After all, real
numbers are complex too (ask any politician for the converse).)

3. Connections

Recall that our main aim is to classify vector bundles. What can be the obstruction for a bundle
to be trivial, i.e., to define globally linearly independent sections that form a basis for every fibre
? One naive way would be to take sections that are “constant” (do not “vary”). In Rn what is the
meaning of a constant function f ? Simply that its directional derivative d f (X) = 0 everywhere and
for all vectors X.

So it seems that defining the notion of a directional derivative of a section s of a bundle along a
vector field X, namely∇Xs, is a useful thing to do. Whatever∇Xs is, it at least ought to be a section of

the bundle. Naively, how can one hope to do this ? After all, s|Uα = ~sα =

 s1
s2

s3 . . . sr

 where Uα is an
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open set over which the bundle is trivial. So one could naively define∇Xs =

 ds1(X)
ds2(X)
. . .

. The problem

with this definition is that when you change your trivialisation to~sβ = gβα~sα then∇Xs does not change
like how a section is supposed to ! That is, ∇Xsβ = dsβ(X) = d(gβαsα)(X) = dgβα(X)sα + gβαdsα(X). So
there is an extra dg term. In fact, this sort of a problem even arises when you calculate the good ol’
directional derivative of a vector field in R2 in polar coordinates.

Exercise 3.1. Suppose ~Y : R2
→ R2 is a smooth vector field. Write ∇XY in polar coordinates.

So the correct thing to do is to write ∇Xsα = dsα(X) + Aα(X) where Aα is an r× r matrix of 1− f orms
called the connection matrix. When you change your trivialisation,

Exercise 3.2. Show that if ∇Xsα = gαβ∇Xsβ then Aα = gαβAβg−1
αβ − dgαβg−1

αβ .

So the connection ∇ = d + A provides a way to take directional derivatives. It is not obvious that
there exists at least one connection for any given bundle. For a trivial bundle, there is an obvious
choice of a connection, namely, Aα = 0 for all α.

Exercise 3.3. Show using a partition-of-unity argument that given a vector bundle E over X, there exists a
smooth connection A on it.

We will mainly care about line bundles (Sushmita will need general vector bundles). For a line
bundle, the transition functions are gαβ : Uα ∩Uβ → C∗. The transformation rule for a connection is
Aα = Aβ − d ln gαβ.

Some people like to define connections abstractly as follows :

Definition 3.4. Suppose E is a vector bundle over M, X,Y are smooth vector fields on M, and Vect
and Γ(E) are the infinite-dimensional vector spaces of smooth vector fields on M and sections of E
respectively, then a connection ∇ : Γ(E) × Vect → Γ(E ⊗ T∗M) is a first order differential operator
(i.e. ∇s(p) depends only on the value of s at p and its first derivative at p) satisfying the following
properties :

(1) Linearity in X : ∇aX+bYs = a∇Xs + b∇Ys. (In other words, ∇s is actually a 1-form that can take
in tangent vectors X and spit out numbers.)

(2) Leibniz rule : Suppose g is a smooth function, then ∇(gs) = dgs + g∇s.

Exercise 3.5. Prove that the two notions (the abstract one and the concrete one) of connections coincide.

Lastly, a metric h on a complex vector bundle E is (as the name suggests) a way to take the dot
product of vectors from E, i.e., locally it is a positive-definite hermitian (or symmetric if the bundle
is real) r × r matrix hα such that g†αβhαgαβ = hβ and 〈s, t〉 = s†αhαtα where our convention for the dot
product in the complex setting is different from the usual mathematician convention. A connection∇
is said to be “compatible” with the metric h if d〈s, t〉 = 〈∇s, t〉+ 〈s,∇t〉. In terms of local trivialisations
this means that if you choose an orthonormal local trivialisation, then Aα is skew-hermitian matrix
of one-forms.

Exercise 3.6. Prove that every vector bundle has a metric and a compatible connection.
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4. Curvature

As an analyst, first order differential operators are pain in the neck. So usually one tries to apply
them twice to get a second order operator. (Compare the usual gradient to the Laplacian. Which do
you think has a prettier theory ?)

So, if we try to define ∇2s, it should, morally speaking, depend on two derivatives of s. However,
shockingly enough, when defined correctly, it depends only on the value of s at a point rather than
any derivatives of it ! In fact, it will turn out that ∇2s = Fs where F is locally a matrix of two-forms
called the curvature of ∇.

Locally, ∇sα = dsα + Aαsα = (d + A)sα. Thus, define ∇2sα = (d + A) ∧ (d + A)sα = (d2 + d ◦ A +
A ∧ d + A ∧ A)s = d(As) + A ∧ ds + A ∧ As = dAs − Ads + Ads + A ∧ As = (dA + A ∧ A)s. Define
Fα = dAα + Aα ∧ Aα. This transforms under change of trivialisation as

Exercise 4.1. Prove that Fα = gαβFβg−1
αβ .

Finally, we specialise to the case of line bundles. For them, Fα = dAα. Moreover, Fα = Fβ = F.
So the curvature of a line bundle is a globally defined 2-form. Also, dF = d2A = 0. So it is a closed
2-form. In addition, if A1,A2 are two different connections, then a = A1 − A2 is actually a globally
defined 1-form (Why?) Thus F2 = F1 + da. Moreover, if Σ is a 2-dimensional submanifold of M, then∫

Σ

F2 =

∫
F1 +da =

∫
F1 +0 (by Stokes) is actually independent of the connection chosen. Actually

it turns out that this number
∫

Σ

F is always of the form −2π
√
−1n where n is an integer.
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