
IISER PUNE LECTURES ON DIFFERENTIAL GEOMETRY (LECTURES 1 AND 2)

1. What is the aim of this series of lectures ?

What is the aim of the study of manifolds ? (Differential topology) Perhaps to “write” a list
of “standard” ones such that every manifold is diffeomorphic to one of these standard ones (clas-
sification). What about the study of Riemannian manifolds (M, g) ? (Riemannian geometry) To
classify upto isometry. What about complex analytic geometry ? To classify upto biholomorphism.
Algebraic geometry ? Upto birational equivalence.

But these are very hard problems. (In fact, for four manifolds and above, some of these problems
are impossible to solve, i.e., there is no algorithm whose input is two 4 manifolds and whose output
is yes if there are diffeomorphic and no otherwise.) A more reasonable question is : Can we come
up with some standard manifolds such that every manifold is a submanifold of it ? (Yes - Whitney
embedding theorem). What about the same question in other categories ? (Yes for Riemannian
manifolds - The Nash embedding theorem, and complicated for compact complex manifolds - The
Kodaira embedding theorem).

The main aim of this series of lectures is to define complex manifolds, give examples, and state
the Kodaira embedding theorem. Along the way, if time permits, I want to do something that is per-
haps only partially related to this main goal, namely, to define smooth vector bundles, connections,
and curvature, and more importantly, convince you that the notion of a vector bundle is natural
and quite central to Differential geometry. (Differential geometry is broadly speaking, a study of
distances and angles using calculus. More precisely, it deals with Riemannian geometry, geometry
of vector bundles, and symplectic geometry among other things.)

Prerequisites are a good rigorous understanding of multivariable calculus, linear algebra, com-
plex analysis, and a first course on manifolds (ideally some De Rham cohomology too, but let’s see
about that). If we ever get to the proof of Kodaira embedding, I would need you to know a little bit
of Hilbert spaces as well.

Before proceeding further, let me clarify one thing - Normally, whilst dealing with manifolds, one
is taught that there are “charts”, i.e., maps φα : Uα ⊂ M → Rn such that the transition functions
ψαβ = φα ◦ φ−1

β : φβ(Uα ∩Uβ)→ φα(Uα ∩Uβ) are diffeomorphisms. From now onwards, I will omit
the φα pretend that Uα is simply a copy of Rn.

Some of the exercises (and perhaps even the material) in these notes may be repeated. Apologies
in advance. The reason is that I could not make my mind as to whether I ought to do vector bundles
in detail before complex geometry or after or at all in the first place.

2. Complex manifolds and several complex variables

Recall that a smooth manifold of dimension n is locally homeomorphic to an open set U ⊂ Rn

such that the transition maps between two open sets are smooth diffeomorphisms. In the same
vein, a complex manifold of complex dimension n is locally homeomorphic to an open set U ⊂ Cn

such that the transition maps between two open sets are biholomorphisms. To make sense of this
definition and to see why you would bother defining such an object will occupy us for some time.
Then we will see that it is actually easy to produce noncompact examples of complex manifolds but
much harder to come up with compact ones. This will naturally lead us to the Kodaira embedding
theorem.
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What does high school coordinate geometry deal with ? Things like the circle x2 + y2 = r2 or
parabolae y = x2, etc. You calculate their tangents, the number of points of intersection of two
of such objects, the number of parabolae passing through some given number of points, given an
equation ax2 +bxy+cy2, finding out when it represents a circle, an ellipse, a parabola, or a hyperbola,
etc. In general asking questions of this sort for objects defined by a polynomial f (x, y) = 0 (and
its higher dimensional generalisations, f1(x1, x2, ..., xn) = f2(x1, ...) = .. = 0) is the subject of “Real
algebraic geometry”. The problem with real numbers is that x2 + y2 = 1 is a circle but x2 + y2 = −1
is a joke.

So it is clear that while real algebraic geometry is what we should be studying (because it is the
most natural thing after the usual things that Greeks and other ancient beings studied), it is too hard
and the theory will not be pretty. Sometimes equations have solutions and sometimes they don’t.
So we extend our study to complex numbers. That is, we interpret x2 + y2 = 1 as an object in C2. It
is no longer a circle (after all, if you have 3 free parameters to play with, you get a 3-dimensional
manifold). But the above questions all make sense and are much more easily answered. Moreover,

Exercise 2.1. Prove that x2 + y2 = 1 is a submanifold of C2.

But it is not any old submanifold. Note that its transition functions are actually analytic functions.
It is an example of a complex manifold of dimension 1 (Is it compact ?). So, since we have such an
abundant supply of naturally occurring complex manifolds (defined by zeroes of polynomials in
Cn), it is a good idea to systematically study them.

Coming back to the definition of a complex manifold, we need to make sense of the phrase “The
transition maps between two open sets are biholomorphisms”. First of all, we know (hopefully!)
what a holomorphic function f : U ⊂ C → C is : It is locally a power series in z. Another way
of defining it is ∂

∂z̄ f = 0 where ∂
∂z̄ = 1

2

(
∂
∂x +

√
−1 ∂

∂y

)
. This is just a compact way of writing the

well-known Cauchy Riemann equations ux = vy,uy = −vx. Another way is to simply say that f is

complex differentiable on the open set U, i.e., lim
h→0

f (z + h) − f (z)
h

=
∂ f
∂z

exists. It is a miraculous fact

(owing to the Cauchy-Goursat integral formula) that all of these are equivalent. A biholomorphism
is simply a bijection such that f and f−1 are holomorphic. Now how can one hope to make sense of
“ f : U ⊂ Cn

→ Cn is holomorphic” ? One way is to demand that the partial derivatives ∂
∂zi

f exist.
Another is to aask whether the function is locally a power series. Yet another is to demand that the
function be C1 and that ∂

∂z̄i
f = 0 for all i. Thanks to a theorem of Hartog, all of these are equivalent.

(Note that this is very non-trivial. We are effectively saying that in the complex setting, “separately
differentiable implies differentiable in the usual sense”.)

Several complex variables is strange subject. Note that in one complex variable, the function
f (z) = 1/z is holomorphic everywhere except at z = 0. In more than one complex variable we have
Hartog’s phenomenon : If f : Cn

− {|zi| ≤ r ∀ i} → Cn is holomorphic, then it extends uniquely to a
holomorphic function on all of Cn provided n ≥ 2. The proof is quite nice : Define f on |zi| ≤ r ∀ i as

f (z) =
1

2π
√
−1

∫
|w|=r+1

f (w, z)dw
w − z1

. Of course the resulting beast is holomorphic on |zi| < r. The thing

we have to check is whether it is a holomorphic extension of the original function or not. Note that
of course this agrees with f on the open set r + 1 > |zi| > r ∀ i , 1. By the identity theorem we are
done.

Another thing : Suppose you have a closed subset S of Cn defined by f (z1, . . . , zn) = 0 where f is
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holomorphic. How do you know when S is a complex submanifold of complex dimension n − 1 ?
In real variables, you use the implicit function theorem, i.e., if ∇ f , 0 everywhere when f = 0, then
indeed it is a submanifold. It is worth pointing out that the same thing holds in complex variables,
i.e., if ∂ f

∂zi
, 0 for some i, then locally you can solve for zi holomorphically in terms of the other

variables. This follows from the inverse function theorem of SCV which in turn follows from the
usual inverse function theorem and the Cauchy Riemann equations.

Exercise 2.2. Formulate and prove the inverse function theorem in SCV.

Lastly, before we return to manifolds, just as we have differential forms x2ex1dx1+5dx2, sin(x1x2)dx1∧

dx2 etc inRn, we have several kinds of differential forms inCn :z̄2dz1+4dz̄2, |z1|
2dz1∧dz2+ f (x2, y2)dz3∧

dz4, 3dz1∧dz̄2, .... A (p, q) form has p number of dzs and q number of dz̄s. Moreover, just like we have

dη =
∂ηJ

∂xi
dxi∧dx j1∧dx j2 . . ., we have∂ and ∂̄. For example, ∂(|z1|

2dz2+z2z̄3dz̄3) = z̄1dz1∧dz2+z̄3dz2∧dz̄3.

Returning to complex manifolds, all the usual definitions in real variables, like immersion, sub-
mersion, and submanifold carry over. By the way, complex manifolds of complex dimension 1 (real
dimension 2) are called Riemann surfaces. Using our implicit function theorem, we can produce
lots of examples :

(1) x2 + y2 = 1 in C2

(2) x2 + y2 + z2 = 1, 2x + 3y + 4z = 0 in C3.
I claim that all of these are noncompact. Perhaps in these special situations, you can directly see that
they are noncompact. But actually, a much stronger statement holds : Every holomorphic function
f : M → C where M is a compact complex manifold is a constant. Indeed u = Re( f ) achieves its
maximum at a point p ∈ M. Now locally, choosing coordinates z1, . . . , zn in a coordinate unit ball B
around p, we have a harmonic function u (actually much stronger than merely harmonic) attaining
its maximum in the interior of the ball. This contradicts the maximum principle unless u is a constant.

Exercise 2.3. Assuming the above statement, prove that there are no compact complex submanifolds of Cn.

So a natural question is “How can one produce examples of compact complex manifolds ?” One
way is to produce one example of such a manifold and hope to construct lots of submanifolds of
it. But how does one produce even one example ? In the real situation, one constructs examples of
manifolds using the quotient construction. This can be applied here too. Here are two examples :

(1) The complex torus : Suppose Λ is a maximal lattice in Cn, i.e., it is of the form n1e1 + n2e2 . . .
where ni are integers and ei form a basis. Then C

n

Λ is diffeomorphic to S1
×S1 . . . S1 (2n-torus).

It is also a complex manifold.

Exercise 2.4. Prove that it is a complex manifold.

(2) Projective space : Consider the set of all lines in Cn+1. My claim is that this can be made
into a manifold, in fact, a compact complex manifold. Indeed, a straight line through the
origin is given by a non-zero vector ~v pointing along it. That is, the set of all such lines
is CPn = Cn+1

−~0
~X≡λ~X, λ ∈C∗

. A point on projective space is represented by an equivalence class

denoted as [X0 : X1 : X2 . . . : Xn] where Xi are coordinates in Cn+1.

Exercise 2.5. Prove that it is a compact complex manifold.
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Now can we come up with submanifolds of projective space ? In the real case, we could simply
take zero loci of smooth functions. But unfortunately, there are no holomorphic non-constant
functions. So the only option is to take maps from CPn to another complex manifold and take
its zero locus. Which complex manifold should we consider and how can we construct such
maps ? Fortunately, there is a naive way to produce submanifolds of CPn coming from algebraic
geometry. After all, how does one produce submanifolds of Cn+1 ? One takes a few polynomials
fi(X0,X1, . . . ,Xn) and sets them to zero. The issue is that if we take fi(λX0, λX1, . . .) then we may
not get the same points and hence this submanifold may not descend to the quotient. However, if
fi(λX0, λX1, . . .) = λk fi(X0,X1, . . .), i.e., if fi is a homogeneous polynomial, then surely its zero locus is
a well-defined set on CPn. (Indeed, it is a hard result due to Chow (which is generalised by Serre
to what is now called GAGA) that every compact complex submanifold of CPn arises this way.)
Indeed, here are examples of such submanifolds :

(1)
∑

aiXi = 0. This is called a hyperplane. That this is a submanifold is easy to see : If X j , 0,
then we may divide by X j, consider coordinates zi, j = Xi

X j
and see that since this is a linear

relation, we can solve for one of these in terms of the others in a holomorphic manner.
(2) More generally, if F(X0, . . . ,Xn) = 0 is a homogeneous polynomial such that ∇F , 0 on

the zero locus, then this defines a submanifold of CPn. Indeed, suppose we choose a
coordinate chart where X0 , 0 and assume that ∂F

∂X j
, 0. Defining zi = Xi

X0
we see that

f (z1, . . . , zn) = F(1, z1, . . . , zn) = 0. Taking derivatives we get ∂ f
∂z j

= ∂F
∂X j
, 0. Therefore, by the

implicit function theorem, we are done. (Suppose j = 0, and that ∂ f
∂zi

= 0 for all other i. This
situation is not possible. (Why ?))

(3) Likewise,
∑

X2
i = 0,

∑
Xi = 0 defines a complex codimension-2 submanifold. (This can be

easily generalised to a bunch of homogeneous polynomials with independent derivatives.)
Now what are polynomials like X0,X2

1 +X2
2 etc maps to ? They are surely not holomorphic functions

on CPn. Let’s write them down in local coordinates. Take the degree one polynomial X1. Now
suppose we choose a coordinate chart U0 : X0 , 0. Then zi = Xi

X0
are local coordinates on U0, i.e., U0 is

homeomorphic to Cn. Now the polynomial X1 = z1X0, i.e., it is “function” z1 : U0 → C. If we choose
another coordinate chart like U j : X j , 0, then X1 = w1X j. Note that w1 and z1 are not the same on
U j ∩U0 but are related by multiplication with w1

z1
. Thus morally speaking, X1 should be thought of

as a map, not to C but to a manifold (which we shall denote as O(1)) defined as ∪iUi×C
On Ui∩U j ,(p,vi)≡(p,gi jv j)

where gi j =
X j

Xi
. These gi j are obviously holomorphic functions from Ui ∩U j to C∗. They also satisfy

gi j = g−1
ji and gi jg jkgkl = 1. This manifold O(1) is known to algebraic geometers as the “Hyperplane

line bundle on CPn”. The gi j are called the “transition functions” of the line bundle.
The manifold O(1) is a curious object. It admits an obvious “projection” map π to CPn such that

π−1(p) is C, i.e., a 1-D complex vector space. So, in a sense, it consists of complex lines, varying
holomorphically, parametrised byCPn. This is an example of a holomorphic line bundle. In general,
a holomorphic line bundle L on a complex manifold X is simply a complex manifold L = ∪αUα×C

(p,vα)≡(p,gαβvβ)
where Uα is a collection of open sets on X such that X = ∪αUα (they are called “trivialising open sets
of L”), gαβ : Uα ∩Uβ → C∗ is a collection of holomorphic functions (called “the transition functions
of L”) satisfying gαβ = g−1

βα and gαβgβγgγα = 1.

Exercise 2.6. Prove that
(1) The holomorphic line bundle L is actually a complex manifold of dimension n + 1.



IISER PUNE LECTURES ON DIFFERENTIAL GEOMETRY (LECTURES 1 AND 2) 5

(2) Also prove that there is a holomorphic projection map π : L → X such that π−1(p) = C, i.e., a 1-D
vector space. These vector spaces are called the “fibres” of the line bundle.

(3) Moreover, prove that around every point p ∈ X, there is an open set U such that π−1(U) is biholo-
morphic to U × C with the map preserving fibres and the biholomorphism being linear on the fibres.
(This is called being “locally trivial”.)

(4) (Optional) Prove that every complex manifold L that satisfies the second and third points above is
actually biholomorphic to the holomorphic line bundle we defined (with the biholomorphism preserving
fibres and being linear on them).

A holomorphic function s : X→ L such that π ◦ s(p) = p is called a holomorphic section of L. For
instance, X0,X1, . . . ,Xn are holomorphic sections of O(1) over CPn. We say that s : U → C provides
a local trivialisation for L over U if s , 0 anywhere on U, i.e., using s one can show that L restricted
to U is actually isomorphic to the trivial line bundle U × C.

Other than O(1) on CPn, what examples of holomorphic line bundles can we come up with ?
A stupid example is X × C. This is (rightly) called the trivial line bundle over X. Here are some
constructions of new line bundles from two given ones V and W on X with transition functions g
and h.

(1) V∗ is the dual line bundle whose fibres are the duals of Vp and whose transition functions
are g−1

αβ .
(2) V ⊗ W is a line bundle whose fibres are tensor products of the vector spaces and whose

transition functions are the product of the matrices g and h.
(3) Suppose f : N→M is a holomorphic map then f ∗(V) (called the “pullback of V”) is a vector

bundle over N with the same fibres but with transition functions f ∗gαβ = gαβ◦ f . For example,
if i : N ⊂M is a complex submanifold of M, then i∗(V) is called the restriction of V to N. The
transition functions are simply restrictions.

The above definition of O(1) seems too contrived. Here is a more pleasant geometric definition
of the Tautological line bundle O(−1).

Definition 2.7. The total space of the tautological line bundle is a subset of CPn
× Cn+1 consisting

of ([X0 : X1 : . . .], v0, v1, . . . , vn+1) such that ~v = µ~X for some complex number µ. The projection map
is π([X0 : X1 . . .], ~v) = [X0 : X1 . . .]. In other words, on the space of lines through the origin, at every
line, simply choose the 1-D vector space represented by that line. The dual bundle O(1) consists of
linear functionals on each of those lines.

Exercise 2.8. Prove that the tautological line bundle as defined above is indeed the dual of O(1) as defined
earlier.

Why is it denoted as O(1) ? The reason is that homogeneous polynomials of degree 1 are holo-
morphic sections of this bundle. (Indeed, we constructed this bundle so that precisely this happens.)

In fact, something stronger is true : All holomorphic sections ofO(1) correspond to homogeneous
degree-1 polynomials. (This is an example of the slogan of Serre’s GAGA : “Analytic and algebraic
geometry coincide on the projective space.”)

Its proof is as follows :
Homogeneous degree-1 polynomials correspond to holomorphic sections ofO(1) : Indeed, given F(X0,X1, . . .) =∑
aiXi where at least one a j , 0, we have already seen that these correspond to sections of O(1)
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(indeed O(1) was defined in a such a way that X1 corresponds to a section. You can easily ver-
ify that

∑
aiXi also canonically defines a section). However, we shall do this in another way,

i.e., by interpreting O(1) as the dual of the tautological line bundle O(−1). A section of O(1)
is supposed to be a linear functional at every point [X0 : X1 : X2 . . .] on the corresponding 1-
D vector space consisting of vectors ~v lying along the line defined by [X0 : X1 . . .]. In other
words, define 〈sF([X0 : X1 . . .]), ~v〉 =

∑
aivi. This is holomorphic. Indeed, on U0 : X0 , 0 for

instance (the other U j behave similarly), [X0 : X1 . . .] = [1 : z1 : z2 . . .] and ~v = v0(1, z1, z2 . . .),
〈sF(z1, z2, . . .), v0(1, z1, . . .) = v0(a1 + a2z2 + . . .). Thus, locally, 〈sF, ~v〉 behaves linearly in ~v and holo-
morphically in z as per definition.

All holomorphic sections correspond to homogeneous polynomials : Suppose s is a section of O(1). Then
at every point [X0 : X1 : . . .], s([X0 : X1 . . .]) is a linear functional that takes ~v = µ~X and spits out a
complex number. This means that we can talk of a holomorphic function F([X0 : . . . ,Xn], v0, v1 . . .) =

〈s([X0 : X1 . . .]), v〉 such that F([X0 : . . .], λv0, λv1 . . .) = λF([X0 : X1 . . .], ~v). Moreover, since ~v = µ~X,
the previous function is actually simply a holomorphic function F(X0,X1, . . . ,Xn) on Cn+1

− ~0 such
that F(λX0, λX1, . . .) = λF(X0, . . . ,Xn). By Hartog’s theorem this extends to all ofCn+1. Moreover, ∂F

∂Xi
is a homogeneous function of degree 0. Thus it is a constant equal to its value at the origin. Thus F
is linear. �

Exercise 2.9. DefineO(k) as the tensor product ofO(1) with itself k-times. Prove that its holomorphic sections
correspond to degree k homogeneous polynomials.

The bottom line is that there are holomorphic line bundles on CPn (and thus on its submanifolds)
that have lots of holomorphic sections and that the “homogeneous coordinates” X0,X1 . . . on CPn

are secretly sections of a certain line bundle, namely, O(1).
A natural question is “Which compact complex manifolds arise as submanifolds of CPn ? (such

things are called “projective varieties”)” The answer to this question is provided by the Kodaira
embedding theorem. As an application of the Kodaira embedding theorem, it turns out that if you
choose a complex torus at random, then almost surely it will NOT be projective. On the other hand,
all Riemann surfaces (1-D complex manifolds) are projective.
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