Assignment-4

(Concepts covered till now: Chain conditions, Primary decomposition in Noetherian rings, Spectrum of a ring and Zariski topology)

A will always denote a commutative ring with 1 and M will denote an A-module.

(1) Give an example of:

- 1. M which is an Artinian A-module but not Noetherian.
- 2. M which is a Noetherian A-module but not Artinian.
- 3. Subring of a Noetherian (Artinian) ring need not be Noetherian (Artinian)
- 4. *M* which is not Artinian A-module but every submodule of it is finitely generated.
- 5. primary ideal which is not a prime ideal.
- 6. ideal $\mathfrak{a} \in A$ such that $\mathfrak{r}(\mathfrak{a})$ is a prime ideal but \mathfrak{a}
- 7. a primary ideal in A which is not of the form \mathbf{p}^n where \mathbf{p} is a prime ideal.

(2) Show that if A is Noetherian (Artinian) ring then any finitely generated A-module is Noetherian (Artinian)

(3) Prove that a primary ideal of \mathbb{Z} is either $\{0\}$ or \mathfrak{p}^n of a prime ideal \mathfrak{p} .

(4) Prove that if \mathfrak{a} is a proper ideal in a Noetherian ring then the prime ideals associated to \mathfrak{a} are precisely the prime ideals which occur in the set of ideals $\{(\mathfrak{a}:x) \mid x \in A\}.$

(5) Show that in $\operatorname{Spec}(\mathbb{Z})$, only infinite set that is closed is $\operatorname{Spec}(\mathbb{Z})$.

(6) Describe what is $\operatorname{Spec}(\mathbb{Z}[X])$ and $\operatorname{Spec}(\mathbb{C}[X,Y])$.

(7) Show that the set $\{\text{Spec}(A_f) \mid f \in A \setminus \{0\}\}$ forms a basis for Zariski topology on Spec(A).

(8) Prove that Spec(A) is quasi-compact. (Note that in a Hausdorff space : quasi-compact = compact)

(9) Prove that Spec(A) is a T_0 space.