LANTHANIDES & ACTINIDES NOTES

General Background

Mnemonics

Lanthanides

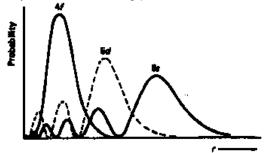
Lanthanide	C hemistry	Presents	No	Problems	Since	Everyone	Goes	То	Doctor	Heyes'	Excruciatingly	Thorough	Yearly	Lectures
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu

Actinides

Although	Theorists	Prefer	Unusual	New	Proofs	Able	Chemists	Believe	Careful	Experiments	Find	More	New	Laws
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Principal Characteristics of the Rare Earth Elements

- 1. Occur together in nature, in minerals, e.g. monazite (a mixed rare earth phosphate).
- 2. Very similar chemical properties. Found combined with non-metals largely in the 3+ oxidation state, with little tendency to variable valence.
- Small difference in solubility / complex formation etc. of M³⁺ are due to size effects. Traversing the series r(M³⁺) steadily decreases – the lanthanide contraction. Difficult to separate and differentiate, e.g. in 1911 James performed 15000 recrystallisations to get pure Tm(BrO₃)₃!


f-Orbitals

The Effective Electron Potential:

- Large angular momentum for an f-orbital (1 = 3).
- Large centrifugal potential tends to keep the electron away from the nucleus.
 - Aufbau order.
- Increased Z increases Coulombic attraction to a larger extent for smaller n due to a proportionately greater change in Z_{eff}.
 - o Reasserts Hydrogenic order.

This can be viewed empirically as due to differing penetration effects.

Radial Wavefunctions P_{n,l2} for 4f, 5d, 6s in Ce

4f orbitals (and the atoms in general) steadily contract across the lanthanide series. Effective electron potential for the excited states of Ba {[Xe] 6s 4f} & La {[Xe] 6s 5d 4f} show a sudden change in the broadness & depth of the 4f "inner well".

For Ba (Z = 56) 4f is an outer orbital with 4f close to its value for the H atom. For La (Z = 57) 4f is an inner orbital with 4f ca. $0.7a_{o}$. Though only for the next atom, Ce (Z = 58) is the 4f electron of sufficiently high binding energy to appear in the ground state configuration.

Which Elements are d-block or f-block?

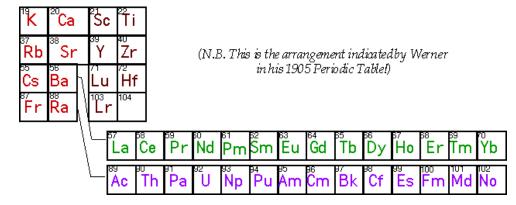
Most current Periodic tables have:-

- > La as first 5d transition element
- > Ac as first 6d transition element

Reasons?

Possibly erroneous (early) interpretation of atomic spectra – misleading electronic configurations?

Some ground state electronic configurations:

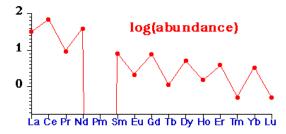

Calcium [Ar]4s ² Strontium [Kr]5s ²	Scandium [Ar]4s ² 3d ¹ Yttrium [Kr]5s ² 4d ¹
Barium [Xe]6s ²	Lanthanum [Xe]6s ² 5d ¹
Ytterbium [Xe]6s ² 4f ¹⁴	Lutetium [Xe]6s ² 4f ¹⁴ 5d ¹
Radium [Rn]7s2	Actinium $[Rn]7s^26d^1$
Nobelium [Rn]7s ² 5f ¹⁴	Lawrencium [Rn]7s ² 5f ¹⁴ 6d ¹

In each case: differentiation by (n-1)d¹ - as expected for the start of a transition series. Lutetium and Lawrencium are just as good candidates to be the first elements of the 3rd and 4th transition series as Lanthanum and Actinium.

Some suggestions why Lu might best regarded as the first 5d transition element.

- Periodic Trends in Various Properties.
- Structures of Metal, Metal Sesquioxide (M₂O₃) and Metal Chloride (MCl₃).
- Similarities for Sc, Y, Lu.
- Differences from La.

Revised Medium-Block Format Periodic Table


THE LANTHANIDES

Abundance & Distribution

- Not especially Rare(!), except Promethium which is produced artificially, e.g. La, Ce & Nd are more common than Pb.
- Most-common minerals: monazite (mixed La, Th, Ln phosphates) – widely-distributed, concentrated in sand & river beds due to relative insolubility.

bastnaesite (a La, Ln fluorocarbonate M^{III}CO₃F) – a vast deposit in Sierra Nevada, USA.

• Abundance of lanthanides in nature. Shows even-odd alternation with atomic number mirrored by several/few alternation of number of stable isotopes with even/odd Z.

Extraction

The extraction of the Lanthanides from minerals by:

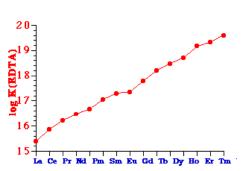
- > Alkali Digestion of Monazite/Xenotime.
 - Monazite and Xenotime can also be opened-out through an Acid Route
- > Acid Dissolution of Bastnaesite

Separation

 2 /₃ of world production is actually used mixed in the proportions occurring naturally in the ore.

1. Cerium & Europium may be extracted **Chemically**:

Oxidise only Ce to M^{4+} by HClO or KMnO₄, then precipitate as CeO₂ or Ce(IO₃)₄. On action of Zn/Hg only Eu forms a stable M^{2+} that doesn't reduce H₂O, then isolate by precipitation as EuSO₄.


2. Separation by **Fractionation**:

Small Scale methods used originally:

- Fractional Crystallization of e.g. Ln(NO₃)₃.2NH₄NO₃.4H₂O or Ln(BrO₃)₃
- Fractional Thermal Decomposition of e.g. Ln(NO₃)₃

Current Small Scale Lab Separation:

• *lon-Exchange Displacement Column* $Ln^{3+}(aq)$ are strongly adsorbed by a cation-exchange resin, add a ligand, typically chelating, e.g. EDTA. Ligand binds most strongly to smallest ion, e.g. the binding constants of the Ln(EDTA) complexes (right).

Current Large Scale Industrial Separation:

Solvent Extraction

Ln³⁺(aq) is extracted in a continuous counter-current process into a non-polar organic liquid (e.g. kerosene).

Solubility of Ln³⁺ in organic solvent increases with its relative atomic mass.

The Metals

Production of Elemental Metals

La, Ce, Pr, Nd, Gd:

 $2MCI_3 + 3Ca \rightarrow 2M + 3CaCI_2 (T > 1000^{\circ}C)$

Tb, Dy, Ho, Er, Tm, Y:

 $2MF_3 + 3Ca \rightarrow 2M + 3CaF_2$ (MCl₃ is too volatile)

Pm:

Eu, Sm, Yb:

$$M_2O_3 + 2La \rightarrow 2M + La_2O_3$$
 (MCl₃ reduced to MCl₂ by Ca)

Mischmetall (mixed light Ln) :

electrolysis of fused LnCl₃/NaCl with graphite anode & graphite or steel cathode.

Structures of Elemental Metals

Properties of the Metals

- Silvery white, but tarnish in air.
- Rather soft (later M are harder).
- High mp & bp.
- Very reactive: $(I_1 + I_2 + I_3)$ comparatively low.
- Burn easily in air, but slowly in cold. Burn at T > 150 °C.
- **↓** Exothermic reaction with $H_2 \rightarrow MH_n$ (n = 2,3, often results in defect states).
- React readily with C, N₂, Si, P, halogens & other non-metals.
- Form binaries on heating with most non-metals (e.g. LnN, Ln₂S₃, LnB₆, LnC₂, ...).

Uses of Metals

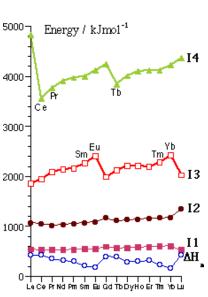
<1% Mischmetall or Ln silicides improves strength & workability of low alloy steels for plate and pipes (also used in Mg alloys).

Mischmetall (50% Ce, 25% La, 25% other light lanthanides) is pyrophoric - alloyed with 30% Fe it is used in lighter flints.

Oxidation State Preferences

Chemistry is principally of Ln³⁺. Examine Thermodynamic Parameters: Ionisation Energies, Heats of Hydration and Atomisation.

<u>lonization</u>


For any given Lanthanide:

- As successive electrons are removed from neutral Ln the stabilizing effect on the orbitals is related to their principal quantum number, 4f > 5d > 6s.
- For Ln²⁺ (except for La & Gd) the configuration is [Xe]4fⁿ
- For Ln³⁺ the configuration is always [Xe]4fⁿ
- The 4f binding energy is so great that remaining 4f electrons are regarded as "core-like" (i.e. incapable of modification by chemical means), except Ce.

Therefore in almost all cases Ln³⁺ provides the best energetics:

Observing trends across the Lanthanide Series:

- The general trend is for increasing ionization energies with increasing Z (i.e. with increase in $Z_{\text{eff}})$
- Marked Half-Shell Effects magnitude as n in In

 Also Quarter/Three-Quarter Shell Effects (compare with transition metals - these are not seen clearly with dⁿ configurations).

Explanation:

Inter-electronic repulsion is related not just to electron pairing but also to angular momentum of the electrons.

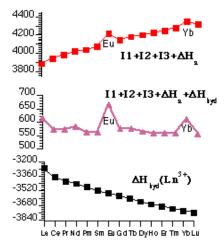
e.g. in Pr^{2+} (4f³) \rightarrow Pr^{3+} (4f²) ionization removes repulsion between e⁻ of like rotation, whereas Pm^{2+} (4f⁴) \rightarrow Pm^{3+} (4f³) removes the stronger repulsion between e⁻ of unlike rotation (latter lonization Energy is correspondingly lower - hence the local minimum in the l₃ graph at Pm). The three-quarter effect is the bigger: interelectronic repulsion is bigger in smaller Lnⁿ⁺

Atomization

 Δ_{atm} H follows the inverse trend to I₃, and therefore also to (I₁ + I₂ + I₃). Metallic bonding is correlated with ease of ionization to Ln³⁺ state. This trend is modified slightly due to the different structures of the Ln metals.

Some Thermodynamic Observations (Ionic Model style)

The trends in the formation of Ln^{III} Compounds, $\Delta_t H$ for $LnX_3(s)$ or $Ln^{3+}(aq) [E^{\circ}(Ln^{3+}(aq) / Ln(s))]$ depends on the balance between:


Energy Supplied to effect:

$$Ln(s) \rightarrow Ln(g) \rightarrow Ln^{3+}(g) + 3e^{-} [\Delta_{atm}H + I_1 + I_2 + I_3]$$
vs.

Energy gained from:

Ln³⁺(g) + 3X⁻(g) → LnX₃(s) [
$$\Delta_L H(LnX_3(s))$$
]
or Ln³⁺(g) → Ln³⁺(aq) [$\Delta_{hyd} H(Ln^{3+})$]

The energies determining trends in $E^{(Ln^{3+}(aq)/Ln(s))}$ are graphed below:

Production of $Ln^{3+}(g)$ shows:

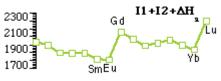
- A smooth trend based on size effects (trend based on Z_{eff}).
- Shell structure effects superimposed with clear maxima at half-shell (f⁷) and full-shell (f¹⁴).
- Also smaller quarter and three-quarter shell effects.

Hydration Energy of Ln^{3+} (also Lattice Energies of $LnX_3(s)$) shows:

- Only a smooth ionic-size-based trend (the trend based on Z_{eff}) and no shell structure effects.
- Balance of trends in Ionization + Atomization Energies with Hydration (Lattice) Energy removes size effects.
- Leaves only the Shell effects see values of $\Delta_f H(Ln^{3+}(aq))$.

Overall:

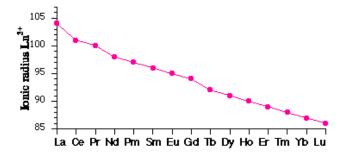
The most important energy correlations are with I_3 Exceptions to +3 rule can also be rationalized.



Predicted from $[\Delta_{atm}H + I_1 + I_2 + I_3 + I_4]$ which follows trends in I_4 . Energy / kJmol⁻¹ 8500 7500 Ce^{Pr} I1+I2+I3+I4+AH₄

Ce, Pr \rightarrow Ce⁴⁺ [4f⁰], Pr⁴⁺ [4f¹] - early in series 4f orbitals still comparatively high in energy. Tb \rightarrow Tb⁴⁺ [4f⁷ valence shell] - half shell effect.

Occurrence of +2 oxidation state


Predicted from $[\Delta_{atm}H + I_1 + I_2]$ which follows trends in $\Delta_{atm}H$, which is reverse of trend in I_3 .

Eu, Sm, Yb \rightarrow Eu²⁺ [4f⁷], Sm²⁺ [4f⁶], Yb²⁺ [4f¹⁴] - clear influences of electronic shell structure & from Δ_{atm} H.

General Features of Lanthanide Chemistry

1. similarity in properties, with gradual changes occurring across the lanthanide series: a size effect from the Lanthanide Contraction

Causes:

Poor screening of nuclear charge by 4f electrons \rightarrow steady increase in Z_{eff}. Relativistic effects influence the shielding characteristics of inner electrons.

2. Primarily the 3+ oxidation state adopted for all elements

Redox chemistry is commonly encountered only for Eu (3+/2+) and Ce (4+/3+). Some solids formulated as Ln^{II} compounds actually contain Ln³⁺ & delocalized e.

3. Coordination chemistry is not especially extensive

Chelating ligands are preferred.

4. Bonding on coordination is primarily ionic in character Complexes undergo rapid ligand exchange.

Why is the bonding so ionic?

4fⁿ electrons are contracted into the core and unable to participate in bonding.

Other implications from lack of covalent bond-forming orbital-availability:

- No π -backbonding occurs.
- No simple carbonyl species (except in Ar matrix at 10 K).
- Cyclopentadienyls are ionic in nature [c.f. $Ln(C_5H_5)_3$ vs. $Fe(C_5H_5)_2$].
- Lanthanide organometallics have different properties from transition metal equivalents.

5. Ln³⁺ cations display typical a-class (hard) properties

preference for O-donor ligands.

Why not N too? O-donor ligands are more likely to be charged (importance of ionic bonding to lanthanides!)

6. Binding to water is common

Such that H_2O is often found included in products isolated from (aq).

7. Coordination numbers are high

> 6, typically 8, 9,... (up to 12 found).

8. Coordination polyhedra are often ill-defined

Determined by ligand requirements, not by bonding requirements. No confirmed examples of isomerism. Solid state structures of binaries are often rather different from those of other metals.

9. Ligand Field Effects are very small

Pale Colours from weak, narrow forbidden f-f optical transitions.

M³⁺ ions are: Colourless (La, Ce, Gd, Yb, Lu) Green (Pr, Tm) Lilac (Nd, Er)

Yellow Pink (Pm, Ho) Yellow (Sm, Dy) Pale Pink (Eu, Tb)

Magnetic properties have spin-orbit coupled contributions (spin-orbit coupling >> ligand field splittings)

Magnetic & Optical properties are largely independent of environment (e.g. similar spectra in gas/solution/solid).

Renewed Technological interest in Lanthanides is mainly in optical/magnetic materials .

Solution Chemistry

<u>Solubility</u>

- Ln³⁺ are not especially soluble in water.
- No simple relationship of solubility to cation radius.
- Depends on small difference between large solvation and lattice energies.
- Depends on entropy effects.

Hydrated Lanthanide lons

- Primary hydration numbers in (aq) are 8, 9.
- Primary hydration number decreases with Lanthanide Contraction.
- Secondary hydration number increases with Lanthanide Contraction.
- Increased polarization of primary hydration sphere by a smaller cation enhances hydrogen bonding to water in the secondary hydration sphere.
- Aqua ions hydrolyze increasingly so from La to Lu as they become smaller.

 $Ln(H_2O)_n^{3+} + H_2O \rightarrow Ln(H_2O)_{n-1}^{2+} + H_3O^+$

Salts with common anions frequently contain $Ln(H_2O)_9^{3+}$ with tri-capped trigonal prismatic ٠ geometry.

Coordination Compounds

Strongly complexing, chelating ligands necessary to yield isolable products from (aq).

Some O-donor chelating ligands that form complexes include NO₃, which binds in its chelate mode.

Notable for high Coordination Numbers.

 $Ce(NO_3)_5^{2-}$ - 10-coordinate bicapped dodecahedron. $Ce(NO_3)_6^{3-}$ - 12-coordinate icosahedron.

Other favoured ligands include: Oxalate, Citrate, Tartrate.

Classic bidentate complexes formed as $Ln(L-L)_3L'$ (L' = H₂O, py, etc...) or $Ln(L-L)_4$ dehydrate in vacuo \rightarrow Ln(L-L)₃ [now coordinatively unsaturated].

 $Ln(L-L)_3$ with bulky R are thermally stable, volatile & sublimable, and soluble in non-polar solvents.

- Widely used as NMR shift reagents. Polar molecules may coordinate Ln(L-L)₃, their NMR resonances are perturbed by the paramagnetism of Ln, e.g. Eu(facam)₃.
- "Anti-knock" activity as petroleum additives.

Solution Chemistry of Other Lanthanide Oxidation States

Ln(IV)

Cerium is the only Ln⁴⁺ with significant aqueous or coordination chemistry. E° (Ce⁴⁺(aq) / Ce³⁺(aq)) = 1.72 V (others estimated at 2.9 V). Prepared by the action of a strong oxidizing agent, e.g. S₂O₈²⁻, on Ce³⁺(aq). Widely used as an oxidant itself, e.g. quantitative analysis / organic chemistry. E° (Ce^{4+}/Ce^{3+}) is markedly dependent on complexation and hydrolysis. Strong oxidizing agent in perchloric acid solution. In other acids coordination occurs, e.g. $Ce(NO_3)_6^{2-}$ is generally used for oxidations as its NH_4^+ salt

Change in pH:

Hvdrolvsis to Ce(OH)³⁺ occurs, then polymerization. Ultimately precipitation of yellow gelatinous $CeO_2.xH_2O.$

4+ charge stabilizes halogeno-complexes e.g. CeF₈⁴⁻.

Ln(II)

Significant solution chemistry of Ln²⁺ is essentially confined to Sm^{II}, Eu^{II}, Yb^{II}

Preparation:

electrolytic reduction of Ln³⁺(aq).

 Eu^{2+} (the most stable Ln^{II}) is prepared by reduction of Ln³⁺(ag) with Zn/Hg.

Properties:

Ln²⁺ Aquo-ion colours: Sm²⁺ blood-red

Eu²⁺ colourless

Yb²⁺ vellow

- $Ln^{2+}(aq)$ are readily oxidized by air, but $Eu^{2+}(aq)$ is easily handled. $Sm^{2+}_{2+}(aq) \& Yb^{2+}(aq)$ reduce water. •
- •
- Eu²⁺(ag) is relatively stable in the dark.
- Carbonate and sulphate salts have been isolated. •
- Sm²⁺ and Yb²⁺ salts are susceptible to oxidation by their water of crystallization.

- Eu & Yb dissolve in liquid ammonia to give intense blue, highly reducing solutions containing $[Ln(NH_3)_x]^{2^+}$ and solvated electrons. Solutions decompose on standing, precipitating the amide $Ln(NH_2)_2$
- Properties of Ln²⁺ are closely-related to those of the alkaline earths. In particular Eu²⁺ is often likened to Ba²⁺.
 Similar Salt Solubilities (like Ba, sulphates are insoluble, hydroxides are soluble).
 Behaviour in liquid NH₃ is very similar.
 Similar Coordination Chemistry (Not extensive / Hard ligands)
 BUT very different redox chemistry!

Magnetism & Spectra

Ln	Ln ³⁺ configuration	Ground State	No. of unpaired e-	Colour	g _J √(J(J+1))	Observed μ _{eff} /μ _B
La	4f ⁰	¹ S ₀	0	colourless	0	0
Се	4f ¹	² F _{5/2}	1	colourless	2.54	2.3 - 2.5
Pr	4f ²	$^{3}H_{4}$	2	green	3.58	3.4 - 3.6
Nd	$4f^3$	⁴ l _{9/2}	3	lilac	3.62	3.5 - 3.6
Pm	4f ⁴	⁵ l ₄	4	pink	2.68	-
Sm	4f ⁵	⁶ H _{5/2}	5	yellow	0.85	1.4 - 1.7
Eu	4f [°]	′F₀	6	pale pink	0	3.3 - 3.5
Gd	4f ⁷	⁸ S _{7/2}	7	colourless	7.94	7.9 - 8.0
Tb	4f ⁸	$^{7}F_{6}$	6	pale pink	9.72	9.5 - 9.8
Dy	4f ⁹	⁶ H _{15/2}	5	yellow	10.65	10.4 - 10.6
Но	4f ¹⁰	⁵ 8	4	yellow	10.6	10.4 - 10.7
Er	4f ¹¹	⁴ I _{15/2}	3	rose-pink	9.58	9.4 - 9.6
Tm	4f ¹²	$^{3}H_{6}$	2	pale green	7.56	7.1 - 7.6
Yb	4f ¹³	² F _{7/2}	1	colourless	4.54	4.3 - 4.9
Lu	4f ¹⁴	¹ S ₀	0	colourless	0	0

Magnetic Properties

- o Paramagnetism.
- Magnetic properties have spin & orbit contributions (contrast "spin-only" of transition metals).
- Magnetic moments of Ln³⁺ ions are generally well-described from the coupling of spin and orbital angular momenta - Russell-Saunders Coupling Scheme.
- Spin orbit coupling constants are typically large (ca. 1000 cm⁻¹).
- Ligand field effects are very small (ca. 100 cm⁻¹).
 - only ground J-state is populated.
 - spin-orbit coupling >> ligand field splittings.
 - magnetism is essentially independent of environment.
- Magnetic moment of a J-state is expressed by the Landé formula:

$$\mu = g_J \sqrt{J(J+1)} \mu_B \qquad g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$$

Ln³⁺ Magnetic Moments compared with Theory

Landé formula fits well with observed magnetic moments for all but Sm^{III} and Eu^{III}. Moments of Sm^{III} and Eu^{III} are altered from the Landé expression by temperature-dependent population of low-lying excited J-state(s).

Uses of Ln³⁺ Magnetic Moments?

NMR Shift Reagents - paramagnetism of lanthanide ions is utilized to spread resonances in ¹H NMR of organic molecules that coordinate to lanthanides.

Ferromagnetism / Anti-Ferromagnetism / Ferrimagnetism

Lanthanide metals and alloys have interesting ordered magnetism effects.

SmCo₅, Nd₂Fe₁₄B permanent magnets - FERROMAGNETIC

- light weight.
- high saturation moments.
- high coercivity.
- high magnetocrystalline anisotropy.
- Superior performance magnets for magnetic bearings / couplings / wavetubes & d.c. synchronous motors.

Rare Earth Garnets e.g. $Ln_3Fe_5O_{12}$ and $Y_3Fe_5O_{12}$.

FERRIMAGNETISM shows an unusual temperature-dependence.

- As T increases moment falls to zero at the Condensation Temperature.
- Above Condensation Temperature moment rises in the opposite direction to a maximum.
- 4 Moment, then falls to zero at the Curie Temperature in the normal manner.

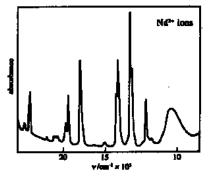
Reason?

- The magnetic moments of the rare earth and iron ions oppose each other.
- 4 The rare earth moments dominate at low temperature.
- 4 The rare earth moments randomize at a lower temperature than the iron moments.

Electronic Spectroscopy

Transitions which involve only a redistribution of electrons within the 4f orbitals (f-f transitions) are orbitally-forbidden by the Selection Rules.

Pale colours of Ln^{III} compounds are usually not very intense.


Crystal/Ligand field effects in lanthanide 4f orbitals are virtually insignificant.

4f electrons are well shielded from external charge by 5s² & 5p⁶ shells.

f-f absorption bands are very sharp (useful fingerprinting and quantisation of Ln^{III}).

[$d \leftrightarrow d$ transitions in transition metal compounds are also orbitally forbidden, but gain intensity from and are broadened by the effects of molecular vibrations in distorting the crystal field].

Optical spectra are virtually independent of environment - similar spectra in gas/solution/solid (sharp lines like typical gas atom spectra).

Insensitivity of f-f transitions means of limited use in study of lanthanide materials.

Ce^{III} and Tb^{III} have high intensity bands in the UV due to $4f^n \rightarrow 4f^{n-1}5d^1$ transitions, i.e. f-d and therefore not orbitally forbidden.

Fluorescence / Luminescence

Of certain lanthanides e.g. Tb, Ho & Eu. **Luminescence**: emission of light by material from its absorbing energy. **Photoluminescence**: use of photons for excitation.

Fluorescence:short time lapse (~ 10^{-8} s) between excitation & emission.Phosphorescence:long decay times - luminescence continues long after excitation source is removed.

<u>Lasers</u>

One of the most common high power lasers is the Neodymium YAG laser. Host material is Yttrium Aluminium Garnet (YAG), Y₃Al₅O₁₂, doped with Nd³⁺.

Solid State Chemistry

Halides

Halides of the form LnX₂, LnX₃ & LnX₄ exist.

<u>LnX</u>₄

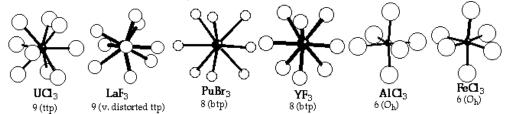
- Goly (Ce, Tb, Pr)F₄ are known.
- ♣ correlation with l₄ of Ln.
- fluorides only most oxidising halogen.
- CeF₄ is comparatively stable e.g. crystallizes as a monohydrate from (aq).
- **4** TbF₄, PrF₄ are thermally unstable and oxidize H_2O , i.e. prepare dry.
- **4** MF_4 all white solids with the UF_4/ZrF_4 structure.
- **4** Dodecahedral coordination of M.

<u>LnX</u>3

All LnX_3 are known (except Pm [not attempted] & possibly Eul₃).Typically crystalline / high mp / deliquescent.Typically obtained as hydrates from (aq).On heating, react with water to form oxyhalides:At high temperatures react even with glass: $2LnX_3 + 1$

 $LnX_3 + H_2O \rightarrow LnOX + 2HX.$ $2LnX_3 + SiO_2 \rightarrow 2LnOX + SiX_4.$

Preparation of anhydrous LnX₃


LnF₃: Ln(NO₃)₃(aq) + 3HF \rightarrow LnF₃•0.5H₂O (very insoluble). Heat this under an HF atmosphere (for heavy Ln) to obtain anhydrous LnF₃.

LnCl₃: $Ln_2O_3 / Ln_2(CO_3)_3 + HCl(aq) \rightarrow LnCl_3 \cdot 6 - 8H_2O$ (rather soluble). Heat this under HCl atmosphere (for heavy Ln) to obtain anhydrous LnCl₃. *or* Heat at 300°C, $Ln_2O_3 + 6NH_4Cl \rightarrow 2LnCl_3 + 3H_2O + 6NH_3$.

LnBr₃ / **LnI**₃: Best by direct combination (susceptible to hydrolysis to oxyhalides). Purify by sublimation (but avoid contact with hot silica!)

Structures:

Ln coordination varies from 9 for light trifluorides to 6 for heavy iodides. Coordination Environments from LnX_3 structures:

<u>LnX</u>₂

Preparation - typically from comproportionation - Ln + $2LnX_3 \Leftrightarrow 3LnX_2$ (Sm,Eu,Yb)I₂ are obtained from thermal decomposition of LnX₃ LnX₂ are easily oxidised. Liberate H₂ from H₂O [Except for EuX₂]. Occurrence of dihalides - parallels high values for I₃. Depends upon the oxidizing power of the halogen (iodides most numerous!)

<u>Trends in the Stability of MX₂</u> Consider:

 $3MX_2(s) \Leftrightarrow M(s) + 2MX_3(s)$

$$\Delta_m H^\circ = 3\Delta_L H(MX_2) - 2\Delta_L H(MX_3) + 2I_3 - \Delta_{atm} H^\circ(M) - (I_1 + I_2)$$

Irregularities should follow [$2I_3 - \Delta_{atm}H^{\circ}(M)$], i.e. effectively follow I₃ [since variation in $-\Delta_{atm}H$ follows closely variation in I₃.

This explains occurrence of MCl₂:

- La, Ce, Pr MCl₂ unknown

- (Sm, Eu, Yb)Cl₂ are the most stable MCl_2 - may be prepared from $LnCl_3(s) + \frac{1}{2}H_2$

Structures

- Coordination numbers from 9 to 6
- Fluorides are Fluorite (CaF₂) [C.N. = 8]
- Nd,Sm,Eu chlorides are PbCl₂-type [C.N. = 7 + 2]
- Nd,Sm,Eu bromides and iodides are SrBr₂ type [mixed CN=7 & 8]
- (Dy,Tm,Yb) I₂ have layer structures (CdCl₂,Cdl₂) [CN=6] with polarization effects

Two Classes of dihalide

1. Most LnX₂ are regarded as "salt-like" halides (insulators). 2. (Ce,Pr,Gd) I₂ have metallic lustre, high conductivity. Formulation as $Ln^{3^+}(I^-)_2(e^-)$ with the electron in a delocalized conduction band. Ln^{II} Compounds are finding increasingly more uses .

Lower Halides

LnX₃/Ln melts yield phases of reduced halide formulae e.g. Ln₂X₃ & LnX.

"Reduced Halides" contain "condensed metal clusters".

Black & metallic increase delocalization of electrons through the metal-metal bonded networks.

 Gd_2X_3 single chains of edge-sharing metal octahedra with M_6X_8 -type environment (i.e. face-capped by X).

Lowest Halides are stabilized by H, C or N atoms encapsulated in Ln₆ cluster octahedra.

e.g. Gd ₂ Cl ₂ C ₂	Layers of edge-sharing M ₆ C units
e.g. Gd ₃ Cl ₃ C	Framework of M ₆ C units

Hydrides

<u>Preparation</u>: Heat at 300-350°C, Ln + $H_2 \rightarrow LnH_2$

Properties of LnH₂

Black, reactive, highly conducting, with fluorite structure. Most thermodynamically stable of all binary metal hydrides. Formulated as $Ln^{3+}(H^{-})_2(e^{-})$ with e⁻ delocalized in a metallic conduction band. Further H can often be accommodated in interstitial sites, and they are frequently non-stoichiometric, e.g. LuH_x where x = 1.83-2.23 & 2.78-3.00.

With a high pressure of H₂ forms LnH₃. Reduced conductivity: salt-like Ln³⁺(H⁻)₃, except for Eu and Yb (the most stable Ln^{II}).

Possible Applications of Rare Earth Intermetallic Hydrides.

- 1. Production of ultra-pure hydrogen.
- 2. Isotope Separation of deuterium and hydrogen.
- 3. Source of fuel for motor vehicles.
- 4. Electrodes in Protonic Batteries/Fuel Cells.
- 5. Load Levelling in Power Stations.
- 6. Chemical heat-pump systems.
- 7. Useful hydrogenation agents in organic chemistry.

Binary Oxides

Ln_2O_3

The most common lanthanide oxide (notable exceptions; CeO_2 , Pr_6O_{11} , Tb_4O_7).

Sesquioxides, Ln₂O₃, are strongly basic, and absorb water / CO from air, forming the hydroxide / carbonate salts.

They have pale colours, and properties strongly resemble alkaline earth oxides. Adopt three structure types:

<u>A-type</u>

- light Ln
- unusual LnO₇ capped-octahedra

<u>B-type</u>

- middle Ln
- LnO₇ units of three types:
- 2 x capped trigonal prisms
- 1 x capped octahedron
- B-M₂O₃ structure is very complex. Densest of M₂O₃ structure types favoured by increased pressure.

<u>C-type</u>

- heavy Ln
- LnO₆ units, but not octahedra
- (face & body divacant cubic)
- C-type M_2O_3 is related to Fluorite (MO₂) with $\frac{1}{4}$ of anions removed.

<u>Polymorphism</u>

A (high T)

B (medium T)

C (low T)

<u>Ln(OH)₃</u>

Obtained by action of conc. NaOH on Ln_2O_3 under hydrothermal conditions. 9-coordinate Ln with tricapped trigonal prismatic geometry. Basicity increases with Z - correlates with decrease in r(Ln³⁺)

LnO₂

 CeO_2 (most stable).

Fluorite (CaF₂) structure.

 Pr_6O_{11} , Tb_4O_7 (formed at high $p(O_2)$ and high temperature) Range of non-stoichiometric phases between Fluorite LnO_2 and C-type $LnO_{1.5}$ - intermediate phases were the first known examples of shear structures.

<u>LnO</u>

known for some Ln. Preparation: Comproportionation Ln + $Ln_2O_3 \rightarrow 3LnO$. NaCl structure. NdO, SmO lustrous golden yellow, conducting formulated as $Ln^{3+}(O^{2-})(e^{-})$. EuO (dark red), YbO (greyish-white) insulating genuine $Ln^{2+}O^{2-}$. EuO is ferromagnetic and an insulator when pure.

Borides

A variety of binary borides exist e.g. YB₂, YB₄, YB₆, YB₁₂, YB₆₆. Most important are LnB_6 – contain B₆ octahedral clusters, and are isomorphous with CaB₆. Black, metallic conductivity (c.f. CaB₆ white, insulator). formulated as $Ln^{3^+}(B_6^{2^-})(e^-)$, except EuB₆, YbB₆ which are $Ln^{2^+}(B_6^{2^-})$.

<u> MT_4B_4 compounds</u> M = Sc, Y, Ln, Th, U. T = Ru, Os, Co, Rh, Ir. Of current interest for their superconductivity, e.g. CeCo₄B₄.

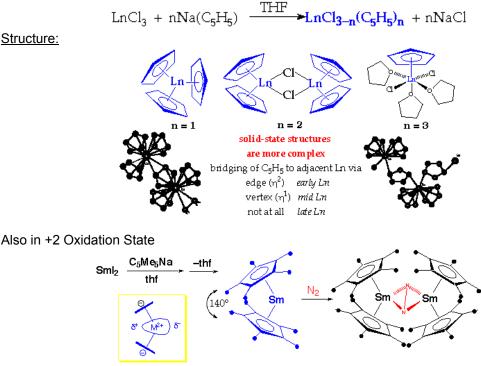
Carbides

<u>Class III</u> Interstitial Carbides. Close-Packed M with C in Octahedral Interstices, e.g. (Tb,Ho,Y)₂C. anti-CdCl₂ structure.

<u>Class II</u>

Occurrence with La – Ho. M_3C C randomly distributed in $\frac{1}{3}$ of Octahedral holes in CCP M. M_2C_3 Pu_2C_3 structure - C_2 groups. MC_2 CaC_2 structure - C_2 groups.Metallic lustre & conductivity - not salt-like.Hydrolysis of (La,Ce)C_2 at ambient temperature gives ethyne, C_2H_2 .

Organometallic Chemistry


Organolanthanide chemistry is not as extensive as organotransition metal chemistry. Currently receiving a lot of attention, especially in C-H Bond Activation studies.

Primarily ionic in their bonding - contracted nature of the 4f valence orbitals. Lanthanides cannot act as π -bases hence Ln-CO compounds are not stable.

Organolanthanides are extremely air & moisture sensitive - reflects highly carbanionic character of organic ligand & oxophilicity of $Ln^{2+}/3^+$.

Cyclopentadienides

Preparation:

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. www.alchemyst.f2o.org

Alkvis & Arvis

σ-bonded alkyls & aryls. From metathesis in ether/THF.

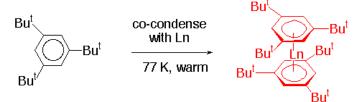
$$LnCl_3 + 3LiR \xrightarrow{THF} LnR_3 + 3LiCl$$

R = phenyl probably polymeric. $R = CH_2CMe_3$ stable as $LnR_3(THF)_2$. $[LnMe_6]^{3-}$ have been isolated for most Ln.

Mixed Alkyl Cyclopentadienides

 C_5Me_5 (Pentamethyl-cyclopentadienyl) is a common organo-Ln ligand.

Large bulk - only 2 C_5Me_5 may be bound to Ln.


Causes major change in structural & chemical properties, especially novel chemistry in mixed alkyl cyclopentadienides, e.g. (C₅Me₅)₂LuCH₃.

- catalyzes alkene polymerization (Ziegler-Natta chemistry).

- reacts with C-H bonds of extremely low acidity e.g. CH₄.

Arenes

Lanthanide Bis-Arene 'sandwich' compounds. prepared by metal vapour synthesis (MVS) techniques. stable at ambient temperature.

Ln(0) - such compounds could not be expected for Ln^{III} with contracted 4f orbitals.

Comparisons and Contrasts

Yttrium - Why consider it with the Lanthanides?

- Occurs with lanthanides in rare earth minerals, e.g. monazite.
- Y occurs effectively exclusively in +3 oxidation state. •
- combines with non-metals \rightarrow YHal₃ Y₂O₃, Y³⁺(H⁻)2(e⁻), YH₃, etc... Y³⁺ has same radius as Ho³⁺ and is difficult to separate from it.
- •
- Forms complexes of high coordination number with chelating O-donors, e.g. $Y(acac)_3(H_2O)$.
- Typical organometallics include: $Y(C_5H_5)_3$ (polymeric in the solid state).
- Dimeric $Y(C_5H_5)_2CI$, monomeric form is a THF adduct

6 Reasons why Scandium could be considered with the Lanthanides

- 1. Sc occurs effectively exclusively in +3 oxidation state. Combines with non-metals \rightarrow ScHal₃ Sc₂O₃, etc... But coordination octahedral (small size).
- 2. Sc forms reduced halides.

e.g. Sc_7CI_{12} which is $Sc^{3+}(Sc_6CI_{12})^{3-}$ with Sc_6 clusters (but c.f. Nb).

- 3. Scandium Hydride ScH₂ is highly conducting Sc³⁺(H)₂(e).
- 4. Forms complexes of high coordination number with chelating O-donors, but forms octahedral complexes with monodentate ligands.
- 5. Nitrate & Sulphate are obtained as hydrated salts.
- 6. Typical organometallics include: $Sc(C_5H_5)_3$ (polymeric in the solid state). Dimeric $Sc(C_5H_5)_2CI$, monomeric form is a THF adduct.

<u>4 Reasons why Scandium could be considered as main group 3</u>

- 1. Sc^{3+} (r = 74 pm) is appreciably smaller than any of the rare earths behaviour intermediate between the Lanthanides & Aluminium.
- 2. Sc_2O_3 is more like Al_2O_3 than Ln_2O_3 : amphoteric in excess OH⁻.
- 3. ScF₃ dissolves in excess F⁻ (N.B. scarcity of halogeno complexes for Lanthanides).
- 4. Anhydrous ScCl₃ is easily obtained by P₂O₅-dehydration of hydrated halide, but unlike AICl₃, ScCl₃ is not a Friedel-Crafts catalyst.

Scandium may with similarly few exceptions be viewed as a 1st Row Transition Metal Six-coordinate complexes are typical.

Aqua-ion is $Sc(H_2O)_6^{3+}$ and is susceptible to hydrolysis \rightarrow O-H-bridged dimers...

Pre-Transition Metals	Lanthanides	Transition Metals
Essentially Monovalent - show Group (n+) oxidation state	Essentially Monovalent (+3). +2/+4 for certain configs	Show Variable Valence (extensive redox chemistry) control by environment - ligands, pH etc…
Periodic trends dominated by (effective nuclear) charge at noble gas config (i.e. on group valence).	Lanthanide Contraction of Ln ³⁺ .	Size changes of M ⁿ⁺ less marked.
Similar Properties for a given group (differentiated by size).	Similar Properties (differentiated by size).	Substantial Gradation in Properties.
widespread on earth.	common mineralogy	diverse mineralogy
No Ligand Field Effects.	Insignificant Ligand Field Effects.	Substantial Ligand Field Effects.
Always 'hard' (O, Hal, N donors)	Always 'hard' (O, X, N donors)	Later (increasingly from Fe-Cu)/heavier
(preferably -vely charged)	(preferably -vely charged)	metals may show a 'soft' side.
'Ionic' or 'Covalent' Organometallics	'Ionic' Organometallics.	'Covalent' Organometallics.
No Ligand Effects.	Paucity of Ligand Effects.	π -Acceptor Ligands - Extensive Chemistry.
Poor Coordination Properties	High Coordination Numbers	Extensive Coordination
(C.N. determined by size).	(C.N. determined by size).	C.N. = 6 is typical maximum
	х У ,	(but many exceptions).
Flexibility in Geometry.	Flexibility in Geometry.	Fixed (by Ligand Field effects) Geometries.
No Magnetism from the metal ions	Free Ion-like Magnetism	Orbital Magnetism 'Quenched' by Ligand
 noble gas configurations of ions 	ground state magnetism	Fields.
		excited J-states populated.
'Ionic' compound formulations → large	Weak, Narrow Optical Spectra.	Stronger, Broader Optical Spectra.
HOMO-LUMO gaps	Forbidden, unfacilitated transitions.	Forbidden transitions. Vibronically-
→ UV CT spectra		assisted.

Some CONTRASTS between Lanthanides & Pre-Transition & Transition Metals

THE ACTINIDES

Naturally Occurring Actinides

- ♣ Only Actinium, Thorium, Protactinium & Uranium occur naturally (i.e. Z ≤ 92).
- Actinium & Protactinium occur only in trace amounts.
- Neptunium & Plutonium occur in uranium minerals in minute amounts not appreciated until after they had been synthesised that the synthesis route might occur naturally!
- All isotopes of all the actinides are radioactive.
- 4 Most of the longer-lived isotopes decay by α -emission.
- **4** Both Thorium and Uranium are far from rare.

<u>Thorium</u>

- ♣ Widely dispersed, accounts for > 3ppm of the earth's crust.
- 4 Natural Thorium is essentially 100% ²³²Th.
- Occurs in monazite [with the rare earths] and in uranothorite [a mixed Th, U silicate].
- **4** Obtained as ThO_2 , thoria, from mineral extraction process.
- Used as 99% ThO₂ / 1% CeO₂ in thoria gas mantles.

<u>Uranium</u>

- Widely distributed found scattered in the faults of old igneous rocks.
- ♣ Natural Uranium is 99.27% ²³⁸U & 0.72% ²³⁵U.

- 4 Obtained usually as UO₂.
- **4** Used for nuclear fuel, and on a smaller scale for colouring glass/ceramics.

Basic Features of Nuclear Structure & Chemistry and Radiochemistry

All Radon isotopes are short half-life α -emitters (but give rise to short-lived β -emitters). Radon gas is derived from Thorium content in granite minerals - hazard in igneous areas.

Actinium and Protactinium occur in uranium ores in trace amounts, because of their participation in Actinium Decay series (from ²³⁵U).

Synthesis of Trans-Uranium Elements – **bombardment** techniques.

Are there any **uses** for trans-Uranium elements?

Plutonium:

- ²³⁹Pu produced from ²³⁸U by neutron capture in all nuclear reactors.
- Acts as nuclear fuel in fast-breeder reactors.
- Processed for nuclear weapon applications.
- Used as a compact energy source due to the heat from α -decay.
- N.B. α -emission is harmless, unless the emitter is ingested.
- Deep-sea diving suits are heated by ca. 750g of ²³⁸Pu
- Combined with PbTe thermoelectric totally reliable electricity.
- Used in Apollo space missions.
- Human heart pacemakers.

Americium:

• ²⁴¹Am is used as the α -emission source in smoke alarms

Actinide Metals

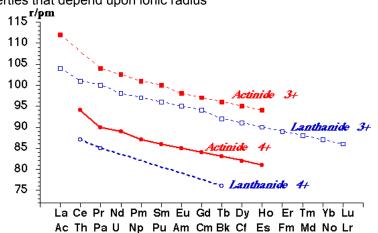
Preparation

General method for all Actinides:

Reduction of AnF_3 or AnF_4 with vapours of Li, Mg, Ca or Ba at 1100 - 1400°C Highly Electropositive.

Typically react with:

- air \rightarrow tarnishing
- boiling water or dilute acid \rightarrow releasing Hydrogen
- most non-metals in direct combination


Structures

Very dense metals (e.g. U = 19 g cm⁻³) with distinctive structures, e.g. Plutonium has at least 6 allotropes and forms numerous alloys.

General Observations (comparisons with Lanthanides)

- > Electronic Configurations of Actinides are not always easy to confirm.
 - Atomic spectra of heavy elements are very difficult to interpret in terms of configuration. Competition between 5fⁿ7s² and 5fⁿ⁻¹6d7s² configurations is of interest.
 - For early actinides promotion 5f → 6d occurs to provide more bonding electrons. Much easier than corresponding 4f → 5d promotion in lanthanides.
 - Second half of actinide series resemble lanthanides more closely.
- 5f orbitals have greater extension wrt 7s and 7p than do 4f relative to 6s and 6p orbitals, e.g. ESR evidence for covalent bonding contribution in UF₃, but not in NdF₃.
- 5f / 6d / 7s / 7p orbitals are of comparable energies over a range of atomic numbers, especially U–Am.

- Tendency towards variable valency.
- Greater tendency towards (covalent) complex formation than for lanthanides, including complexation with π -bonding ligands.
- Electronic structure of an element in a given oxidation state may vary between compounds and in solution.
- Often impossible to say which orbitals are being utilized in bonding. 4
- Ionic Radii of ions show a clear "Actinide Contraction"
 - Actinide 3+ or 4+ ions with similar radii to their Lanthanide counterparts show similarities in properties that depend upon ionic radius

Electronic Spectra

- Narrow bands (compared to transition metal spectra).
- Relatively uninfluenced by ligand field effects.
- Intensities are ca. 10 x those of lanthanide bands.
- Complex to interpret.

Magnetic Properties

- Hard to interpret.
- Spin-orbit coupling is large & Russell-Saunders (L.S) Coupling scheme doesn't work.
- Ligand field effects are expected where 5f orbitals are involved in bonding.

Survey of Actinide Oxidation States

+2

- 4 Unusual oxidation state.
- Common only for the heaviest elements.
- No²⁺ & Md²⁺ are more stable than Eu²⁺.
 Actinide An²⁺ ions have similar properties to Lanthanide Ln²⁺ and to Ba²⁺ ions.

+3

- The most common oxidation state.
- The most stable oxidation state for all trans-Americium elements (except No). 4
- Of marginal stability for early actinides Th, Pa, U (But: Group oxidation state for Ac).
- General properties resemble Ln³⁺ and are size-dependent.
- Stability constants of complex formation are similar for same size An³⁺ & Ln³⁺.
- Isomorphism is common.
- Later An³⁺ & Ln³⁺ must be separated by ion-exchange/solvent extraction.
- 4 Binary Halides, MX₃ easily prepared, & easily hydrolysed to MOX.
- Binary Oxides, M₂O₃ known for Ac, Th and trans-Am elements.

+4

- Principal oxidation state for Th.
- ♣ Th⁴⁺ chemistry shows resemblance to Zr⁴⁺ / Hf⁴⁺ like a transition metal.
- Very important, stable state for Pa, U, Pu.
- Am, Cm, Bk & Cf are increasingly easily reduced only stable in certain complexes, e.g. Bk⁴⁺ is more oxidizing than Ce⁴⁺.
- **4** MO_2 known from Th to Cf (fluorite structure).
- **MF**₄ are isostructural with lanthanide tetrafluorides.
- ♣ MCl₄ only known for Th, Pa, U & Np.
- Hydrolysis / Complexation / Disproportionation are all important in (aq).

<u>+5</u>

- Principal state for Pa.
- 4 Pa^{5+} chemistry resembles that of Nb⁵⁺ / Ta⁵⁺ like a transition metal.
- For U, Np, Pu and Am the An O_2^+ ion is known (i.e. quite unlike Nb/Ta).
- Comparatively few other An(V) species are known.
- \bullet e.g. fluorides, PaF₅, NbF₅, UF₅; fluoro-anions, AnF₆, AnF₇²⁻, AnF₈³⁻.
- 4 e.g. oxochlorides, PaOCl₃, UOCl₃; uranates, NaUO₃.

<u>+6</u>

- 4 AnO_2^{2+} ions are important for U, Np, Pu, Am.
- \downarrow UO₂²⁺ is the most stable.
- Few other compounds e.g. AnF_6 (An = U, Np, Pu), UCl₆, UOF₄ etc..., U(OR)₆.

<u>+7</u>

Only the marginally stable oxo-anions of Np and Pu, e.g. AnO₅³⁻.

Actinide Aqueous Chemistry

- Latimer & Frost Diagrams for elements in acid & alkaline (aq) indicate actinides are quite electropositive.
- Pa Pu show significant redox chemistry, e.g. all 4 oxidation states of Pu can co-exist in appropriate conditions in (aq).
- Stability of high oxidation states peaks at U (Np).
- > An^{3+} is the maximum oxidation state for (Cf)Es Lr.
- No²⁺(aq) is especially stable ~ most stable state for No in (aq).
- Redox potentials show strong dependence on pH (data for Ac Cm).
- High oxidation states are more stable in basic conditions.
- Even at low pH hydrolysis occurs formation of polymeric ions. When hydrolysis leads to precipitation measurement of potentials is difficult, e.g. Pa⁵⁺ hydrolyses easily; potentials that indicate it to be the most stable oxidation state are recorded in presence of F⁻ or C₂O₄²⁻.
- > Tendency to disproportionation is particularly dependent on pH, e.g. at high pH $3Pu^{4+} + 2H_2O \Leftrightarrow PuO_2^{2+} + 2Pu^{3+} + 4H^+$.
- Early actinides have a tendency to form complexes complex formation influences reduction potentials, e.g. Am⁴⁺(aq) only exists when complexed by fluoride (15 M NH₄F(aq)).
- Radiation-induced solvent decomposition produces H• and OH• radicals, which lead to reduction of higher oxidation states e.g. Pu V/VI, Am IV/VI

Actinide Stereochemistries

Actinide Stereochemistries show similarities with the Lanthanides. High coordination numbers, e.g. $[Th(NO_{3})_{6}]^{2}$ has distorted icosahedral (C.N. = 12) geometry, and C.N. = 8, 9 are very common UF₈²⁻, Th(S₂CNEt₂)₄

Distortions from idealised stereochemistries

e.g. PuF₆²⁻ is not octahedral, but widest range of stereochemistries is for An(IV) rather than An(III), possibly because chemistry of early actinides has received most attention!

Complexes

A wide range of complexes with monodentate and chelating ligands. Complexing ability:- $[M^{5+}] > M^{4+} > MO_2^{2+} > M^{3+} > MO_2^{+}$

Geometry may be strongly influenced by covalent bonding effects, e.g. MO_2^{2+} unit is always linear $\rightarrow UO_2(\eta^2 - NO_3)_2(H_2O)_2$ is hexagonal bipyramidal.

Compounds: Actinide Hydrides, Halides, Oxides, Oxyhalides ...

- For a given oxidation state show similarly diverse C.N. to Lanthanides.
- Different accessible oxidation states even greater diversity of structure.
- Wide variety of oxidation states of ligands & number of oxidation states.
- Extraordinary range of stereochemistry in actinide complexes and compounds.

Uranium Chemistry

Halides <u>Fluorides</u> UF_6 - the most important fluoride.

Preparation: UO₂ + 4HF → UF₄ + 2H₂O. $3UF_4 + 2CIF_3 \rightarrow 3UF_6 + CI_2.$

Properties:

mp. 64°C, vapour pressure = 115 mmHg at 25°C. Made on a large scale to separate uranium isotopes. Gas diffusion or centrifugation separates 235 UF₆ from 238 UF₆. Uranium richer in 235 U is termed enriched, richer in 238 U is depleted. Powerful **fluorinating** agent.

Other Fluorides

 UF_6 + Me₃SiCl → Me₃SiF + ½Cl₂ + UF₅ (melts to an electrically-conducting liquid). UF₆ + 2Me₃SiCl → 2Me₃SiF + Cl₂ + UF₄ → 500-600°C gives UO₂ + CFCl₂CFCl₂. Mixed-Valence fluorides such as U₂F₉ also form. Reduction of UF₄ with ½H₂ yields UF₃.

Chlorides

 UCl_4 – is the usual starting material for the synthesis of other U(IV) compounds.

<u>Preparation:</u> Liquid-phase chlorination of UO_3 by refluxing hexachloropropene.

<u>Properties:</u> Soluble in polar organic solvents & in water. Forms various adducts (2 - 7 molecules) with O and N donors.

<u>UCI</u>₃

Usually encountered as $UCI_3(thf)_x$ (a rather intractable material). Unsolvated binary gives its name to the UCI_3 structure!

Actinide trihalides form a group with strong similarities (excepting redox behaviour) to the Lanthanides.

From chlorination of $U_3O_8 + C$. Highly oxidising. Moisture-sensitive : $UCI_6 + 2H_2O \rightarrow UO_2CI_2$ (Uranyl Chloride) + 4HCl. In CH_2CI_2 solution UCI_6 decomposes to U_2CI_{10} (Mo_2CI_{10} structure).

Halogeno Complexes

All Halides can form halogeno complexes, but F⁻ and Cl⁻ are best-known.

Occurrence:

U(III): $UCl_5^{2^-}$, $U_2Cl_7^{2^-}$ and UCl_4^- . U(IV): $UF_7^{3^-}$ and $UF_8^{4^-}$ are common, $UF_6^{2^-}$ and $UCl_6^{2^-}$ are also known. Also pseudohalide complexes, e.g. $[U(NCS)_8]^4$.

U(V): U(V) is usually unstable in (aq), but UF₅ in 48% HF \rightarrow M+UF₆ (M⁺ = Rb⁺, Cs⁺, H₃O⁺) salts U(VI): UF₇ and UF₈²⁻ are known, the latter is more thermally-stable.

Hydrides

Principal Uranium Hydride is UH_3 – important as a source material for U(III) and U(IV) chemistry.

Oxides

Many binary phases UO_x have been reported. Many are not genuine phases. Genuine phases show range of O-content. The most important genuine phases are UO_2 , U_4O_9 , U_3O_8 , UO_3 .

$UO_{2} \& U_{4}O_{9}$

UO₂ (black-brown) has the Fluorite structure. Stoichiometric material is best obtained from:

$$UO_3 \xrightarrow{H_2 \text{ or } CO} UO_2 + H_2O (\text{or } CO_2)$$

300-600°C

Interstitial Oxide lons may be incorporated into the structure - UO_{2+x}. Neutron Diffraction studies indicate oxide vacancies in the normal fluorite lattice. At $UO_{2,25}$ (U_4O_9) (black) - interstitials are ordered forming a distinct phase in the phase diagram.

 $U_{3}O_{8} \& UO_{3}$

 $U_{3}\overline{O_{8}}$ is dark green.

conveniently made by heating uranyl nitrate or ethanoate in air.

$$3UO_2(NO_3)_2 \xrightarrow{O_2} U_3O_8 + 6NO_2 + 2O_2$$

> 650°C Higher uranium oxides decompose to U_3O_8 .

> 800°C loses U_3O_8 oxygen.

Structure:

Mixed oxide - average oxidation state U_{5.33}. Evidence suggests Class II/III mixed valence. All U atoms have essentially identical environments. Contains pentagonal bipyramidal UO₇ units.

UO₃ is orange-yellow. Produced by a variety of methods:

$$UO_2(NO_3)_2 \xrightarrow{O_2} UO_3 \qquad (NH_4)_2U_2O \xrightarrow{O_2} UO_3$$

Structure:

> 6 modifications have been characterised. Most contain O=U=O 'uranyl' groups linked by 4x equatorial bridging O - distorted octahedral environments.

<u>Uranates</u>

Fusion of uranium oxides with alkali or alkaline earth carbonates – orange/yellow/brown mixedoxides, Uranates.

Aqueous Chemistry

Complex aqueous chemistry due to extensive possibilities for complexation, hydrolytic reactions, often leading to polymeric ion species.

Reduction Potentials appropriate for 1M HCIO4 indicate:

U³⁺

Powerful reducing agent, reduces H_2O to H_2 (solutions in 1M HCl stable for days). Obtained by reduction of $UO_2^{2^+}$ electrolytically or with Zn/Hg.

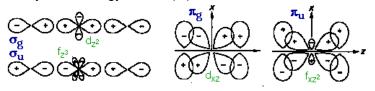
U⁴⁺

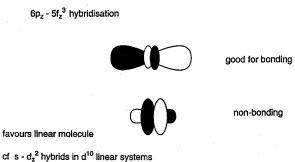
Only slightly hydrolysed in 1M acid solution $U^{4+} + H_2O \Leftrightarrow U(OH)^{3+} + H^+$. But, it can give rise to polymeric species in less acid solutions. Regarded as a 'stable' oxidation state of uranium in (aq).

 UO_2^{\pm}

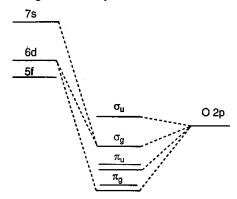
Extremely unstable to disproportionation. Evidence for its existence in (aq) from stopped-flow techniques. More stable in DMSO (half-life \sim 30 mins).

 UO_{2}^{2+}


The Uranyl ion. Very stable, and forms many complexes. A dominant feature of uranium chemistry. Reduced to U⁴⁺ by e.g. Zinc, Cr²⁺ Re-oxidation by H₂¹⁸O₂ \rightarrow U¹⁸O₂²⁺ Re-oxidation by ¹⁸O₂ \rightarrow U(¹⁸O¹⁶O)²⁺


Linear, symmetrical (O=U=O)²⁺ structure.

Why is it trans linear, whereas WO_2^{2+} is cis, bent? WO_2^{2+} (6d⁰) is cis bent because it allows π -donation from the 2 O to 2 independent d-orbitals, with a single d-orbital shared.


 ThO_2 (6d⁰5f⁰) is bent (122°) for similar reasons i.e. no f-orbital participation. UO_2^{2+} (6d⁰5f⁰) is trans, linear because of the participation of its 5f orbitals.

U(5f) are of considerably lower energy than Th(5f).

Details of the MO diagram for $AnO_2^{2^+}$ are controversial, but f-orbitals have ungerade symmetry, d-orbitals are gerade \rightarrow no d-f mixing in centrosymmetric $AnO_2^{2^+}$ unit.

 UO_2^{2+} readily adds 4-6 donors in its equatorial plane \rightarrow distinctive complexes e.g. cyclic hexadentates.

 $UO_2^{2^+}$ salts show characteristic (yellow) fluorescence.

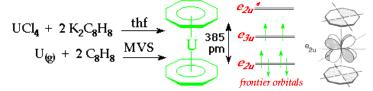
Organometallics

Organometallic chemistry of actinides is relatively recent.

Similar to lanthanides in range of cyclopentadienides / cyclo-octatetraenides / alkyls Cyclopentadienides are π -bonded to actinides.

Compounds include:-

$$UCl_{3} + 3K^{*}(C_{5}H_{5}) \xrightarrow{\text{benzene}} (C_{5}H_{5})_{3}U^{III} + 3KCl$$


$$UCl_{4} + 4K^{*}(C_{5}H_{5}) \xrightarrow{\text{benzene}} (C_{5}H_{5})_{4}U^{IV} + 4KCl$$

$$UCl_{4} + 3Tl^{*}(C_{5}H_{5}) \xrightarrow{\text{DME}} (C_{5}H_{5})_{3}U^{IV}Cl + 3TlCl$$

$$\xrightarrow{\text{most important}} (C_{5}H_{5}) \xrightarrow{\text{copentadienide}} (C_{5}H_{5})_{3}U^{IV}Cl + 3TlCl$$

 $C_5H_5^-$ does not behave ionically, but CI^- is labile \rightarrow formation of a wide variety of $(C_5H_5)_3UX$ compounds.

The most notable Cyclooctatetraenide is Uranocene

- Green crystals, paramagnetic and pyrophoric.
- Stable to hydrolysis.
- Planar 'sandwich'.
- Eclipsed D_{8h} conformation.

- 23 -

- UV-PES studies show that bonding in uranocene has 5f & 6d contributions.
- e_{2u} symmetry interaction shown can only occur via f-orbitals.

Nuclear Reactors, Atomic Energy & Uranium Chemistry

Principles of Nuclear Reactors

- Nuclear fission = large nucleus splitting into 2 highly energetic smaller nuclei + neutrons.
- \geq Sufficient neutrons of suitable energy can induce fission of further nuclei \rightarrow Chain reaction.
- > To sustain chain reaction a critical mass of uranium must be achieved (prevents neutron loss).
- > Kinetic energy of main fragments is converted to heat (106x energy of same mass of coal).
- > Only naturally-occurring fissile nucleus is 235 U (0.72% natural abundance).

Modern Nuclear Reactors

- Current nuclear reactors use UO₂ fuel less reactive than U metal.
- Enrichment is by fractional gaseous centrifugation of UF₆ (easily sublimed).
 Neutron capture by ²³⁸U results in formation of ²³⁹Pu, which is fissile. Significant amounts of Pu will only be produced in an unmoderated reactor (fuel reprocessing more dangerous!)

Coolants

- Water/Heavy Water to keep it liquid it must be pressurized.
- \succ CO₂ gas in the Advanced Gas-Cooled Reactor.