
Bioinorganic Chemistry

What is bioinorganic chemistry?

- Intersection of classical inorganic chemistry and biology
 - Study of natural occurring inorganic elements in living systems
 - Study of metals introduced as probes or drugs
- Why is it important?
 - There are many metals that are essential to life.

Periodic table of life

Essential elements for humans (daily requirement: 25 mg)

Presumably essential elements

- Symptoms of deficiency: Mg (muscle cramps), Fe (animea), Mn (infertility)
- Toxic effects in case of high doses (therapeutic width)
- Occurrence of non essential elements (e.g. Rb: 1.1 g / 70 kg) and of contaminations (e.g. Hg)

Need for Metal Ions

Metal ions must be obtained for growth and

Table 3.1 Approximate Elemental Composition of a Typical 70kg Human

Bulk elements and m	ineral ions		
Oxygen	44 kg	Phosphorus	680 g
Carbon	12.6 kg	Potassium	250 g
Hydrogen	6.6 kg	Chlorine	115 g
Nitrogen	1.8 kg	Sulfur	100 g
Calcium	1.7 kg	Sodium	70 g
		Magnesium	42 g
Trace and ultra-trac	e elements		
Iron	5000 mg	Barium	21 mg
Silicon	3000 mg	Molybdenum	14 mg
Zinc	1750 mg	Boron	14 mg
Rubidium	360 mg	Arsenic	~3 mg
Copper	280 mg	Cobalt	~3 mg
Strontium	280 mg	Chromium	~3 mg
Bromine	140 mg	Nickel	~3 mg
Tin	140 mg	Selenium	~2 mg
Manganese	70 mg	Lithium	~2 mg
Iodine	70 mg	Vanadium	~2 mg
Aluminum	35 mg		
Lead	35 mg	\	

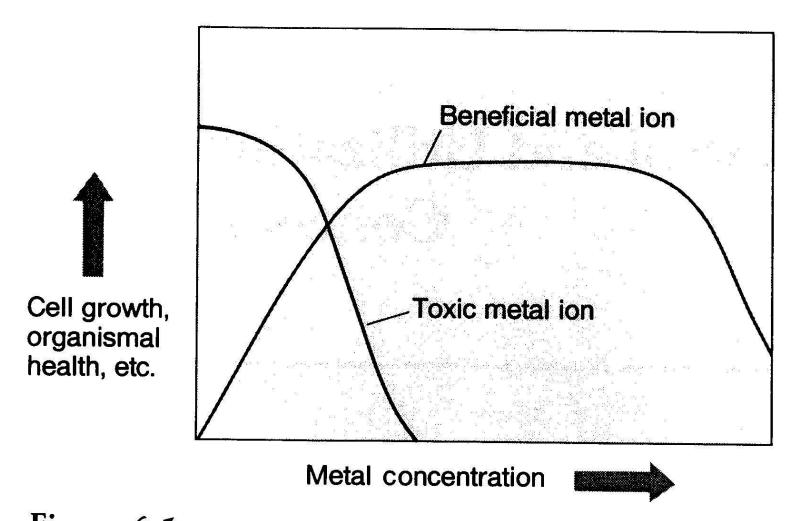


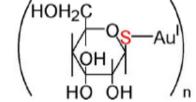
Figure 6.1
Representation of the concentration dependence of the toxic and beneficial effects of metal ions.

- Metalloproteins
 - Dioxygen transport
 - Hemoglobin and hemocyanin
 - Electron transfer
 - iron-sulfur clusters, blue-copper proteins, and cytochromes
 - Structure
 - zinc finger proteins
 - nucleic acid-binding domains which regulate gene expression

Metalloenzymes

- Hydrolytic enzymes
 - Catalyze addition or removal of H or O in a substrate
- Two-electron redox enzymes
 - Catalyze redox activity of substrate (e.g. removal O atoms from substrate)
- Multielectron pair redox enzymes
 - $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

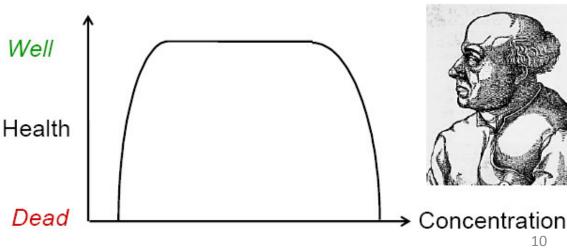
Cellular Communication


- Cellular triggers
 - Na⁺ flux across a cell membrane triggers neuron firing
 - Ca²⁺ has influence on muscle activity
- Regulation of gene expression
 - Possible function of Zn²⁺ in zinc-finger proteins

- 4. Nucleic Acid Interactions
- Ion Transport and Storage
- Metals in Medicine
 - Diagnostic and therapeutic drugs
 - Historical: Hg²⁺ syphylis, Mg²⁺ for intestinal disorders, and Fe²⁺ for anemia
 - Current: cisplatin and auranofin

Application of metals in medicine

- Li⁺: Treatment of depression (Li₂CO₃, low doses)
- Gd³+: Contrast agent (NMR)
- BaSO₄: Contrast agent (radiography)
- Technetium-99m or 99mTc ("m" indicates that this is a metastable 99mTc: radio diagnostics (thyroid) nuclear isomer) is used in radioactive isotope medical tests
- Au(I): Rheumatism

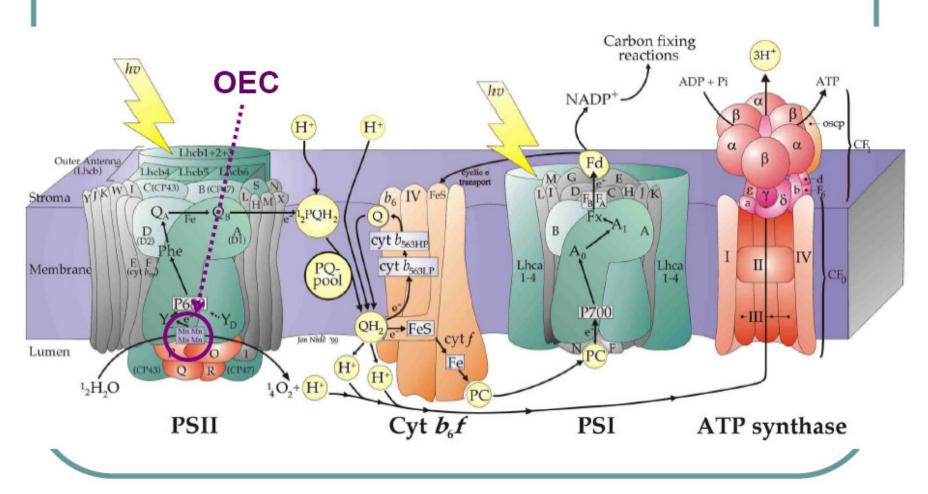

$$Na_3[O_3S_2-Au^l-S_2O_3]$$

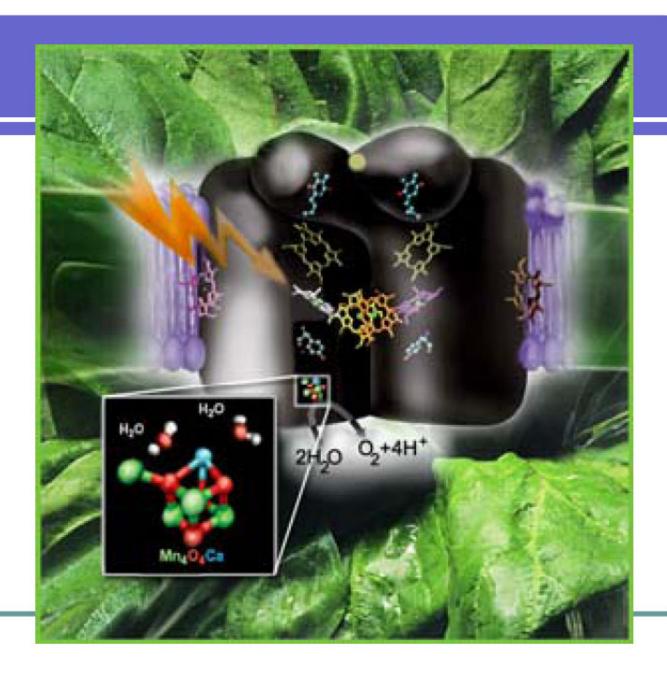
Sb(III): Eczema

Bi(III): Gastric ulcer

 Cd: Carboanhydrase (Thalassiosira weissflogii)

Application of metals in medicine


• Pt(II): Cisplatin (*cis*-[Pt(NH₃)₂Cl₂]), chemotherapy (inhibition of cell division, not cell growth)


Filamentous growth of bacteria

Oxygen Evolving Complex (OEC) in Photosystem II (PSII)

- Component of photosynthesis in all green plants
- Active site contains
 - 4 Mn atoms with oxo bridges
 - Ca²⁺ ions
 - Overall cluster structure is unknown
- Catalyzes rxn: 2H₂O → O₂ + 4H⁺ + 4e⁻
 - This manganese complex produced all the oxygen in the world!
- Energy from light drives this thermodynamically uphill process

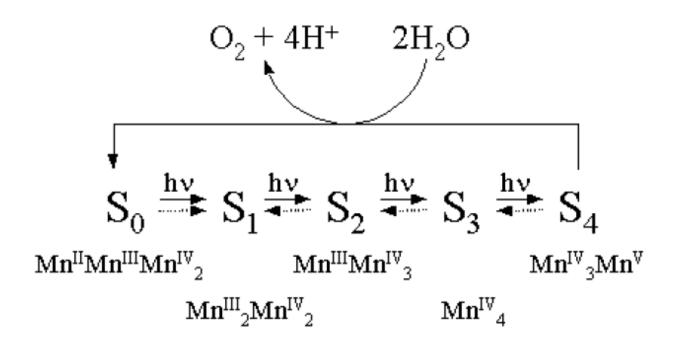
Components of Photosynthesis

Function of the Photosystems

 In PSII, energy captured from light is used to split water into oxygen molecules and hydrogen ions, freeing electrons in the process.

•
$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

- The electrons are transported to PSI (photosystem I) then to the Calvin cycle
 - CO₂ → sugar

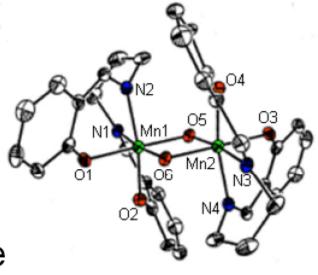

Mn Cluster

- Proceeds thru multiple oxidation states of Mn atoms (stable at 2+, 3+, 4+ and 5+) known as S-states.
- Each photon can access next highest state until S₄ is reached, O₂ is released and the cycle begins again
- Exact mechanism and structure still being studied

$$S_0 \xrightarrow{hv} S_1 \xrightarrow{hv} S_2 \xrightarrow{hv} S_3 \xrightarrow{hv} S_4$$

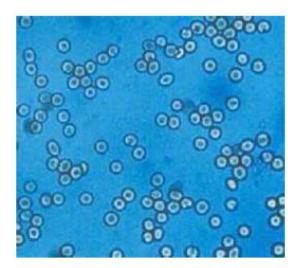
Proposed Oxidation States

4 total photons (hv) required for activity

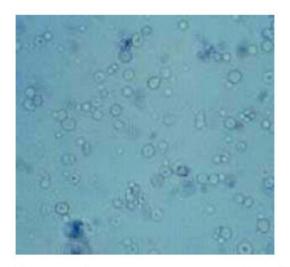


Small Model Systems

- Many small inorganic model complexes have been developed to model these mixed-valent Mn centers.
- Various goals
 - Give an insight into the high-valent Mn chemistry in aqueous media
 - Understand preference and structural requirements for oxidation states
 - Duplicate reactivity

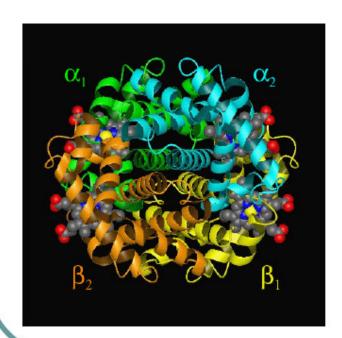

From Univ. of Michigan, V. Pecoraro's Group

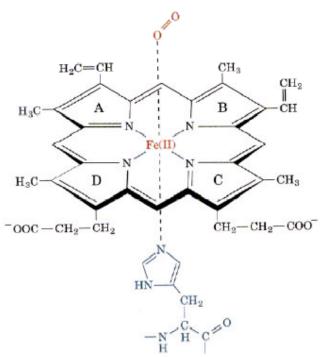
- [Mn^{IV}(salpn)(µ-O)]₂
 structurally resembles the OEC Mn-cluster
 - Mn-Mn distance (2.7 Å) is equal to the distance deduced for the the lower S-states
 - Contains bis-oxo bridges like the proposed structure



Hemoglobin

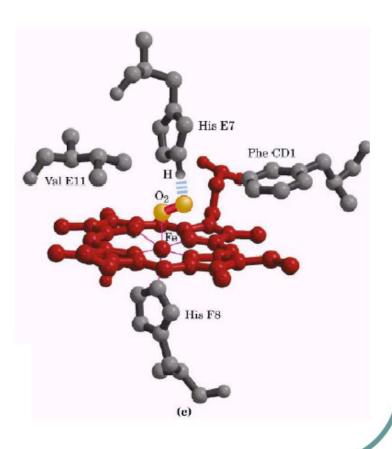
- O₂ transporter for all vertebrates
 - dioxygen removed from the air in lungs and delivered to Myoglobin in tissues (e.g. muscles)
 - dependent upon Fe.


Oxygenated


Poorly oxygenated

Structure of Hemoglobin

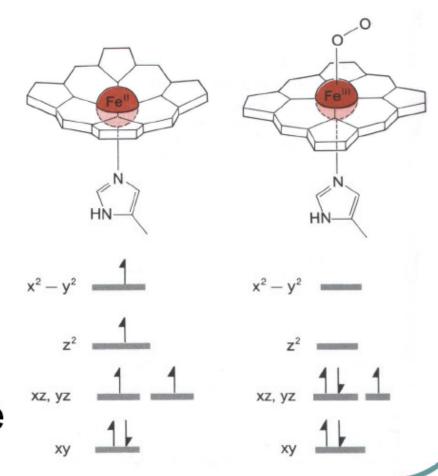
- 2 α and 2 β peptides



 Multisubunit protein,
 4 Iron-porphyrin rings, each can bind 1 O₂

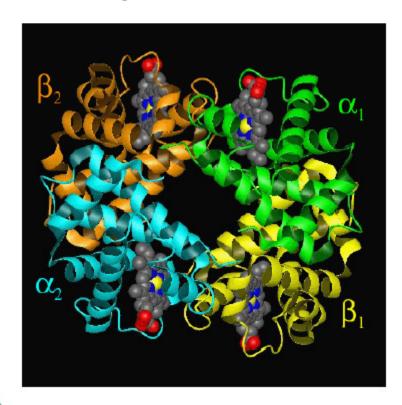
Visualizing O₂ Binding

- O₂ approaches and binds to Fe²⁺ (ferrous)
- Electron transfer oxidizes Fe to 3+ (ferric)
- A distal histadine residue forms a Hbond to the bound O₂

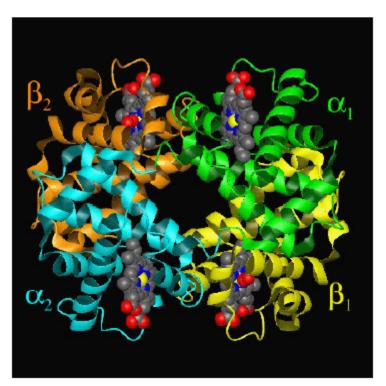


Iron Function in Hemoglobin

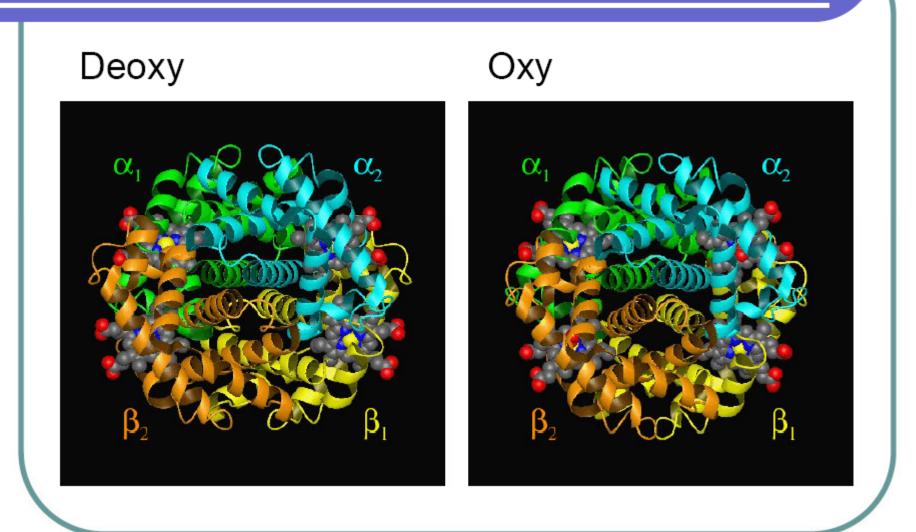
- Iron oxidized from 2+ (deoxy) to 3+ (oxy)
- The electronic configuration of the metal dictates O₂ binding
 - Deoxy form: high spin Fe²⁺ "bends" porphyrin ring to have a shortened Fe-N(his) bond.
 - Oxy form: after binding O₂, the low spin Fe³⁺-N(his) bond lengthens, the porphyrin ring becomes more planar, and the Fe moves further into the plane
- Quaternary structure of the protein also changes thru deoxy-oxy cycle


Electronic changes in Fe upon binding of O₂

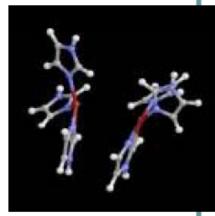
- $Fe^{2+} \rightarrow Fe^{3+}$
- hs \rightarrow ls
- Porphyrin ring becomes more planar
- Lengthening of Fe-N(his) bond anchoring heme



Quaternary structure changes upon binding of O₂ (top view)


Deoxy

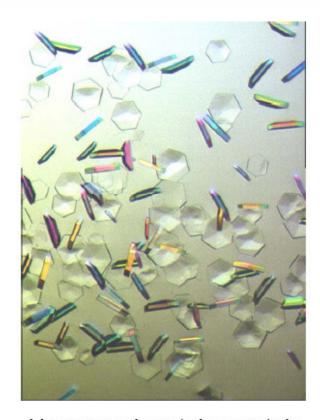
Oxy (red O₂ on hemes)



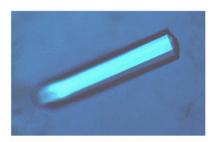

Quaternary structure changes upon binding of O₂ (side view)

Hemocyanin

- Very large oxygen transport protein (4x the size of Hb, >400,000 amu)
- Found only in arthropods and mollusks (e.g. lobsters and crabs)
- No heme group
- Deoxy form is colorless
- Two Cu¹⁺ (d⁹) atoms anchored by histadine residues are oxidized to Cu²⁺ upon binding O₂



Physical Methods



- Protein X-ray Crystallography
 - When a single ordered crystal can be grown, Xray diffraction can be used to determine the exact molecular structure of the protein
 - Actually identifies the position of each atom by measuring how the crystal diffracts X-rays
 - Very time consuming, may require months or years to determine structure
 - Resulting structure will bring much insight into the function and mechanism of the protein


Example Protein Crystals

Hexagonal protein crystals of glycosol hydrolase.

hexagonal rod

trigonal

hexagonal bipyramid

Physical Methods

- Electron Paramagnetic Resonance, EPR
 - Samples with unpaired electrons yield unique EPR signatures; ideal for metalloproteins with metals (e.g. Cu²⁺ and Fe³⁺)
 - Useful in determining metal coordination environments and oxidation states
 - Can distinguish between high and low spin Fe³⁺
 - Signal intensity can be followed to measure protein purification steps

Physical Methods

- Vibrational Spectroscopy
 - Molecular vibrations of proteins are very complex (100's of atoms, complex structure)
 - Resonance Raman (rR) spectroscopy can be used to identify molecular vibrations coupled to electronic transtions
 - In hemoglobin, by monitoring the O=O stretching frequency, łR can identify when the protein is in the deoxy or oxy form.

Summary

- Bioinorganic chemistry is everywhere!
- Transition metals have fundamental roles in biological processes
 - Hemoglobin (Fe²⁺ → Fe³⁺)
 - Hemocyanin (2 Cu¹⁺ → 2 Cu²⁺)
 - OEC (4 Mn of varying oxidation states)
- Various physical methods are used to study bioinorganic systems
 - Including X-ray crystallography, EPR, and vibrational spectroscopy