The Radiative Flavor Template at the LHC: Lepton non-universality and g-2
G. Cacciapaglia et al
The Standard Model of Particle Physics and its description of Nature have been recently challenged by a series of precision measurements performed via different accelerator machines. Statistically significant anomalies emerged in the heavy meson physics sector, when measuring the muon magnetic momentum, and very recently when deducing the mass of the W boson. Here we consider a radiative extension of the Standard Model devised to be sufficiently versatile to reconcile the various experimental results while further predicting the existence of new bosons and fermions with a mass spectrum in the TeV energy scale. The resulting spectrum is, therefore, within the energy reach of the proton-proton collisions at the LHC experiments at CERN. The model investigated here allows to interpolate between composite and elementary extensions of the Standard Model with emphasis on a new modified Yukawa sector that is needed to accommodate the anomalies. Focusing on the radiative regime of the model, we introduce interesting search channels of immediate impact for the ATLAS and CMS experimental programs such as the associate production of Standard Model particles with either invisible or long-lived particles. We further show how to adapt earlier SUSY-motivated searchers of new physics to constrain the spectrum and couplings of the new scalars and fermions. Overall, the new physics template simultaneously accounts for the bulk of the observed experimental anomalies while suggesting a wide spectrum of experimental signatures relevant for the current LHC experiments.