CMS-B2G-19-006
Search for a heavy vector resonance decaying to a Z boson and a Higgs boson in proton-proton collisions at √s= 13 TeV
This paper describes the search for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime for resonances with masses larger than 800 GeV. The data samples of proton-proton collisions were collected from 2016 to 2018 at a center-of-mass energy of 13 TeV by the CMS experiment at CERN and correspond to an integrated luminosity of 137 fb−1. Upper limits are derived on the production of a narrow heavy resonance Z' as a function of the Z' mass, and a mass below 3.5 and 3.7 TeV is excluded at 95% confidence level in models where the heavy vector boson couples exclusively to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z' mass between 0.8 and 4.6 TeV, respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.