Extending RECAST for Truth-Level Reinterpretations
Alex Schuy, Lukas Heinrich, Kyle Cranmer, Shih-Chieh Hsu
RECAST is an analysis reinterpretation framework; since analyses are often sensitive to a range of models, RECAST can be used to constrain the plethora of theoretical models without the significant investment required for a new analysis. However, experiment-specific full simulation is still computationally expensive. Thus, to facilitate rapid exploration, RECAST has been extended to truth-level reinterpretations, interfacing with existing systems such as RIVET.