Fast simulation of detector effects in Rivet
Andy Buckley, Deepak Kar, Karl Nordstrom
We describe the design and implementation of detector-bias emulation in the Rivet MC event analysis system. Implemented using C++ efficiency and kinematic smearing functors, it allows detector effects to be specified within an analysis routine, customised to the exact phase-space and reconstruction working points of the analysis. A set of standard detector functions for the physics objects of Runs 1 and 2 of the ATLAS and CMS experiments is also provided. Finally, as jet substructure is an important class of physics observable usually considered to require an explicit detector simulation, we demonstrate that a smearing approach, tuned to available substructure data and implemented in Rivet, can accurately reproduce jet-structure biases observed by ATLAS.