arXiv:1909.12285
Interaction networks for the identification of boosted H→bb decays
Eric A. Moreno, Thong Q. Nguyen, Jean-Roch Vlimant, Olmo Cerri, Harvey B. Newman, Avikar Periwal, Maria Spiropulu, Javier M. Duarte, Maurizio Pierini
We develop a jet identification algorithm based on an interaction network, designed to identify high-momentum Higgs bosons decaying to bottom quark-antiquark pairs, distinguish them from ordinary jets originating from the hadronization of quarks and gluons. The algorithm's inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated to them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of accurate LHC collisions, released by the CMS collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms.