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You are encouraged to try out as many problems as possible. All the problems require the use
of computers. You can use any programming language of your choice. They are classified into 3
different categories depending roughly on the level of difficulty. You can choose to do the problems
in any order. They are placed approximately in an increasing level of difficulty. For most of these
problems, you can refer to the book by Hilborn [1] or Strogatz [3] for additional help. Some online
resources are suggested for numerical techniques at the end.

For Beginners

1. For the map xn+1 = x2n, with 0 ≤ xn ≤ ∞ try the following;
(a) Compute and plot xn vs. n with x0 = 0.8 and with x0 = 1.9. If you wish, you can try with any
other value of x0 as well.
(b) Based on the plot obtained in (a), identify the fixed points for the map.
(c) What can be said about the stability of the fixed points based on the plotted results in (a).

2. For the differential equation ẋ = sinx, do the following;
(a) What additional information is needed to obtain x(t) numerically on the computer ?
(b) Once you figured out (a), use 2nd order Euler’s method to compute the solution x(t).
(c) Plot the computed solution and the exact analytical solution. Verify if they agree with one an-
other.

3. Obtain numerical solutions to the system in problem (2) using the 2nd order Euler’s method
using step sizes h = 0.1, 0.01, 0.001. You can try other step sizes as well. What do you expect from
computed solutions with these step sizes. Verify if the computed results are consistent with the error
expected from Euler’s method.

4. Obtain numerical solutions to the system in problem (2) using the 4th order Runge-Kutta method.
Plot the numerical solutions obtained by Euler’s method and RK method. Which of them is better
? How will you figure out the accuracy of these solutions ?

5. Generate 5000 random numbers using ran() or rand() (or any other such function call) provided
in your system.
(a) Plot the random number sequence.
(b) Numerically compute and plot the distribution of random numbers. What do you infer from this
plot ?
(c) Compute and plot the autocorrelation function ? What do you infer from this plot ?

6. Compute the machine epsilon for your computer in single and double precision. Machine epsilon
is the smallest number when added to 1 gives a result different from 1. This is related to how the
computers store floating point numbers. This exercise should be done using Fortran, C or C++
etc. In particular, do not use Matlab or Mathematica for this problem. Figure out why Matlab or
Mathematica should not be used in this case ?
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Intermediate

7. Consider the Logistic map
xn+1 = µxn(1− xn)

(a) Compute and plot the trajectory xn as a function of n = 1, 2, 3......5000 for several choices of µ.
(b) Compute and plot the bifurcation diagram as a function of the parameter µ.
(c) Compute and plot the invariant density for the logistic map at µ = 4. Compare it with the
analytical result for the invariant density.

8. Consider the logistic equation
dx

dt
= µx(1− x).

Solve this equation using Euler’s or RK4 method for µ = 4. Take x(0) = 0.2. Compare the trajec-
tories of logistic equation and logistic map at µ = 4.

9. Compute the Lyapunov exponent for the logistic map for various values of the parameter µ. See
section 9.3 of Hilborn’s book for one possible way of calculating the Lyapunov exponent. Compare
the result with the bifurcation diagram in the same range of parameter.

10. Compute the solutions for tent map (with µ = 1.1, 2.0) given by

xn+1 = µxn (xn < 1/2)

= µ(1− xn) (xn ≥ 1/2).

Use the procedure in question 8 (from Ref. [1]) to compute the Lyapunov exponent for tent map
and circle map.

11. For the logistic map in problem 1, compute xn as a function of n = 1, 2, 3......10000 at
µ = 2.0, 3.25, 4.0. Compute and plot the power spectrum of xn. What can you infer from the
power spectrum and how does it correlate with the bifurcation diagram and the qualitative dynam-
ics of logistic map.

12. For the system given by,

ẋ = µx+ y − x3

ẏ = −x+ µy + 2y3,

where µ is a parameter, use numerics to show that µ = 0 is a Hopf bifurcation and classify it as
subcritical or supercritical ?

13. Compute the solutions of
ẍ+ ω2x = 0

with ω = 2 and initial condition x(0) = 0 and ẋ(0) = 1. (a) Plot x(t) for t ∈ [0, 4π].
(b) Plot the phase space for this system.
(c) Plot E = ẋ2 + ω2x2 as a function of t and verify that it is a conserved quantity.

14. Do the problem (12) in single and double precision and see its effect on how well E is conserved
as a function of time. By using any algorithm of your choice, control the growth of error such that
E is conserved correct to at least 6 decimal places.
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15. Consider the Lorenz system with parameters (σ, r, b) ;

ẋ = −σx+ σy

ẏ = −xz + rx− y

ż = xy − bz

(a) Obtain the Jacobian matrix by linearising around the fixed point (x∗, y∗, z∗).
(b) Numerically compute the eigenvalues of the Jacobian matrix for the case with (x∗ =

√

b(r − 1), y∗ =
√

b(r − 1), z∗ = r − 1). Take the parameter set to be (10, 35, 2.666).
(c) What do you infer about the stability of Lorenz system in the vicinity of this fixed point.

Advanced

16. Sketch the bifurcation diagram, determine stability of the branches, detect and classify all
bifurcations and find the bifurcation points of

ẋ = (r − x2)(10r − x4).

17. Compute the devil’s staircase for the circle map

θn+1 = θn +Ω−
K

2π
sin 2πθn (mod 1)

for K = 1. See sections 6.7-6.8 in Hilborn’s book [1] as well as the Devil’s staricase shown in the
figure below.

Figure 1 : Devil’s staircase (winding number W (Ω) vs. Ω) for the circle map at K = 1.

18. For the Henon map given by

xn+1 = yn + 1− ax2n

yn+1 = bxn

with parameters a = 1.4 and b = 0.3, simulate and plot xn against yn. You should verify that you
get the Henon attractor.

19. For the Duffing oscillator given by

ẍ+ αẋ+ x+ βx3 = f sinωt

compute and plot the trajectories for f = 0.54214, 0.5421, 0.54 with β = 1, ω = 1, α = 0.5. Compute
the bifurcation diagram for 0.538 < f < 0.544. See Ref [3] for more details on this system.
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20. For the Rossler system

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c)

with a, b, c being the parameters. For a = 0.4, b = 2, c = 4, compute and plot the attractor. Take a
look at the time series z(t).

21.(a) Compute the solutions for the damped and driven nonlinear oscillator

ẍ+ αẋ+ x = f sinωt

for the set of parameters α = 0.1, ω = 1, f = 0.1. Compute and verify that you get a limit cycle.
Use RK-4 method to solve the problem.
(b) For α = 1 and f = 0, compute and verify that you get an attractor in phase space.

22. Consider the standard map given by

pn+1 = pn +
K

2π
sin(2πxn)

xn+1 = xn + pn+1.

Plot the stroboscopic section for this map for K = 0.2, 0.5 and K = 0.97, 2.0. Relate it to the results
of KAM theorem. Identify the golden KAM tori in the Poincare section for K ≈ 0.97.

23. Consider the model Hamiltonian

H =
p2x
2

+
p2y
2

+
x2 + y2

2
+ αx2y2.

Compute and plot the x − px Poincare section for this system with parameter α = 0.1, 0.2. What
are the qualitative features about the dynamics that you can infer from the Poincare section. Verify
that the energy is the conserved quantity for this system.

24. Create a real symmetric matrix (of order 1000) with entries drawn from appropriate Gaussian
distribution. Diagonalise this matrix and compute eigenvalue density and spacing distribution. Refer
to text book by M. L. Mehta on Random matrices.

Challenge problems

25. Bouncing Ball Model [4] (Everson 1986): An imperfectly elastic ball bouncing on relatively
massive harmonically vibrated table with amplitude A and frequency ω. The displacement of the
ball above the table is given as

d2y

dt2
= −g −Aω2 cosωt.

Using the scaling y = A and t = 1/ω, we get d2y
dt2

= −γ− cos t, where γ = g/Aω2 is the dimensionless
acceleration. When y = 0 (the ball hits the table), then

ẏnew = −βẏold,
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where β reflects the elasticity of the collision (β = 1 and β = 0 correspond to completely elastic and
inelastic collisions, respectively). If the displacement of the table is assumed small relative to the
displacement of the ball, this system of ODEs can be approximated by a 2D mapping,

vn+1 = ǫvn + (1 + ǫ)(1 + sin τn),

τn+1 = (τn +Bvn+1) mod 2π,

where vn and τn is the velocity and time at the nth impact. Plot the bifurcation diagram for above
system and analyze the transition points (assume ǫ = 0.3).

27. Ueda’s circuit [6] (Ueda 1979): Duffing’s equation was studied by Ueda, exploring the
dynamics of the transition of chaotic attractors (Ueda 1979). The system can be described by the
second order differential equation

ẍ+ kẋ− x+ x3+ = −B cos t,

with k = .1 and B = 12. This particular system describes a circuit, Ueda’s circuit, with nonlinear
inductance and a sinusoidal voltage source. Solve the above system and show the trajectories.

30. Use any method that you know of to compute the integral correct to at least 10 decimal places.

lim
ǫ→0

∫

1

ǫ

1

x

(

log x

x

)

dx

Tips : Check for convergence of the integral under the limit.
Note : This was part of the 100-digit, $100 challenge posed by SIAM and set by Nick Trefethen in
2002. To see the other problems, go to http://people.maths.ox.ac.uk/trefethen/hundred.html .

Some useful online resources for numerical techniques :
[1] http://www.mathworks.in/moler/chapters.html
[2] http://math.fullerton.edu/mathews/n2003/NumericalUndergradMod.html
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