Problem sheet : 4

PHY 310; Mathematical Methods. Need not be submitted back. Not for evaluation.

- 1. Obtain the Fourier coefficients of f(x) = x in $0 \le x \le \pi$.
- 2. Obtain the Fourier coefficients of f(x) = x in $-\pi \le x \le \pi$. Show that $\sum_{n=1}^{\infty} \frac{-1^{n+1}}{n^2} = \frac{\pi}{12}$.
- 3. A rectangular pulse is given by,

$$f(x) = 1, \quad |x| < a, \qquad f(x) = 0, \quad |x| > a.$$

Show that the Fourier exponential transform is $F\omega = \sqrt{2/\pi} \frac{\sin a\omega}{\omega}$.

- 4. Show that the Fourier sine transform of $1/\sqrt{x}$ is $\sqrt{\omega}$.
- 5. Using the properties of delta function, show that $\delta[a(x-x_0)] = \frac{1}{a}\delta(x-x_0)$.
- 6. Let f(x) = x in -1 < x < 1 and its Fourier representation is given by,

$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin n\pi x}{n}$$

Use this to show that $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$.

7. Find the Fourier series for f(x) = |x| in $-\pi/2 < x < \pi/2$. Also use this to sum the series $\sum_{\text{odd}n} 1/n^4$.

8. Use Parseval's relation to evaluate

$$\int_{-\infty}^{\infty} \frac{dk}{(k^2 + a^2)^2} = \frac{\pi}{2a^3}.$$

- 9. Solve $dy/dx + \alpha x = 0$ using Fourier transforms.
- 10. Show that Laplace transform of $\delta(t)$ is unity. What is the Laplace transform of $\delta(t-t_0)$

11. Using Laplace transforms, solve m X''(t) + b X'(t) + k X(t) = 0. (See Example 15.10.1 in Arfken and Weber).

12. For unit step function, $\theta(t-k)$, verify that its Laplace transform is e^{ks}/s .

13. Calculate the inverse Laplace tranform for the following ;

(a) $1/(s^2 + a^2)^2$ (b) $1/s^2(s^2 + a^2)^2$. (c) $s/(s^2 + a^2)^2$

- 14. Show that $e^{-bs}f(s) = \mathcal{L}[F(t-b)].$
- 15. Show that the Laplace transform of the square wave of period T given by,

$$F(t) = 1$$
 for $0 < t < T/2$
 $F(t) = 0$ for $T/2 < t < T$

is $(1/s)(1 - e^{as/2})/(1 - e^{as})$.

16. Show that the Dirac delta function $\delta(x-a)$ expanded in a Fourier sine series in the halfinterval 0 < a < L is given by,

$$\delta(x-a) = \frac{2}{L} \sum_{n=1}^{\infty} \sin\left(\frac{n\pi a}{L}\right) \sin\left(\frac{n\pi x}{L}\right).$$

17. Expand f(x) = x in the interval (0, 2L) and sketch the first three terms of the series.