PH3214 : Problem sheet IISER, Pune. (January, 2025)

(NOTE : This is a sample selection of problems. You must try out more problems from other text books as well. Books by R. Shankar, Walter Greiner and Griffiths are a good source of problems.)

1. A coherent state is given by

$$\alpha\rangle = C\sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle,$$

Find the normalisation constant C.

2. If α and β are two coherent states, find $|\langle \alpha | \beta \rangle|^2$.

3. Evaluate the uncertainty product in the n-th state of harmonic oscillator.

4. Show that for coherent state α , the minimum uncertainty product is $\hbar/4$.

5. Do problem 5.18(a) (in page 229 or 241) in Griffith's book.

6. For a particle in a periodic potential V(x + a) = V(x) with N sites, and when periodic boundary conditions are applied, show that $K = 2\pi n/Na$, where $n \in 0, \pm 1, \pm 2, \ldots$ In this, K is often called quasimomentum.

7. What is meant by allowed and forbidden bands.

8. For an electron propagting in a periodic potential, whose wave function is

$$\phi(x) = e^{ikx}u(x),$$

Show that the mean momentum is $\langle p \rangle = \hbar k + \langle u | \hat{p} | u \rangle$.

9. For an electron in an external magnetic field, the Hamiltonian is

$$H = -\gamma \mathbf{S}.\mathbf{B},$$

show that $\langle S \rangle$ will precess around **B** at a frequency $-\gamma \mathbf{B}$.

10. For an electron in an external magnetic field, the Hamiltonian is

$$H = -\gamma \mathbf{S}.\mathbf{B},$$

If the external magnetic field is aligned in the z direction, then find the eigenfunctions and eigenvalues of this system.

11. Consider two spins. Solve the eigenvalue problem for the operators S^2 and S_z . In this, S represents the sum of two spins, and S_z represents sum of the projection of spins along z-axis.