NAME :

PH-3214; Test : 2

ROLL NUMBER :

IISER, Pune. (8 April, 2025)

Time: 50 minutes. Maximum Marks : 20.

NOTE 1: Answer all the 5 questions. Use the same symbols/notation given in the questions.

NOTE 2: For questions 1 to 3, write the final answer ONLY inside the box. They will NOT carry any partial marks. Rough calculations can be done in separate sheet (but will not be evaluated).

1. A system represented by Hamiltonian operator \hat{H} changes abruptly (fast change) during the interval $t = -\epsilon/2$ to $t = \epsilon/2$, where $\epsilon \ll 1$. Let the states before and after the change be represented by $\psi(-\epsilon/2)$ and $\psi(\epsilon/2)$. Write down (do not derive) the relation between these states. (2)

$$\Psi(\varepsilon/_2) = \Psi(-\varepsilon/_2)$$

2. An harmonic oscillator with frequency ω is subjected to time dependent perturbation of the form $-\epsilon_0 X e^{-t^2/\tau^2}$. In this, ϵ_0 is a constant, and τ is the timescale of perturbation. Without any derivation, answer the following: (1+1+2)

(a) What is the time-period T of the system without the perturbation.

$$T = 2\pi/\omega$$

(b) Harmonic oscillator is in state $|m\rangle$ before the adiabatic perturbation begins. What is the final state of harmonic oscillator.

 $|m\rangle$

(c) What is the condition on the timescales for which adiabatic theorem will apply.

$$2\pi /\omega << T$$

3. A system with time-dependence is given by $H(t) = H^0 + H^1 f(t)$, where f(t) is a periodic perturbation with timescale of τ . Let the initial state be $|i_0\rangle$ with energy E_0 . Due to selection rules, transitions are allowed only to states $|j_1\rangle, |j_2\rangle, |j_3\rangle$ with energies E_1, E_2, E_3 . Answer the following questions. (1+2+2)

(a) For the system to make a transition to $|j_3\rangle$, what is the condition on energies E_0, E_1, E_2, E_3 .

$$E_3 - E_0 = tw$$

(b) After applying the perturbation $H^1f(t)$ starting from t = 0, the probability $P_{i \to j_2}(t)$ for transition to state $|j_2\rangle$ is evaluated at times t_1 and t_2 such that $t_1 > t_2$. At what time $(t_1 \text{ or } t_2)$ is the probability $P_{i \to j_2}(t)$ highest? How to increase this probability even closer to 1?

$$P_{i \rightarrow j_2}$$
 highest at t_1 . It gets close to 1 as $t \rightarrow \infty$.

(c) Let $f(t) = f_0$ (time-independent constant). Then, at very short times $t \ll 1$, what is the probability of initial state making a transition to state $|j_3\rangle$. Give an expression for this probability.

$$P_{i_0 \to j_3}(t) = |\langle i_0| H^1 | j_3 \rangle|^2 f_0^2 t^2 / t^2$$

NOTE 3: Questions 4-5 require detailed answers with all the steps. Partial marks will be given for Questions 4 and 5, provided your calculations are in the right direction.

4. Consider a system subject to perturbation $H^1(t) = H^1\delta(t)$. If system is in state $|i\rangle$ for t < 0, then use first order perturbation theory to determin the probability to find the system in state $|f\rangle$ for t > 0. (5)

5. Show that the differential scattering cross-section $d\sigma(\theta)/d\Omega$ satisfies

$$\frac{d\sigma(0)}{d\Omega} \ge \frac{K^2 \sigma^2}{16\pi^2},$$

where σ is the total cross-section.

(5)

Start writing your answers for questions 4 and 5 in the space given below

4.
$$H^{1}(t) = H^{1} \delta(t)$$

Amplitude for transition from $i^{\circ} to f^{\circ}$:
 $d_{f^{\circ}}(t) = -\frac{i}{t} \int_{-t}^{t} \langle f^{\circ} | H^{\prime}(t) | i^{\circ} \rangle e^{i \omega_{f} i^{\prime}} dt^{\prime}$
 $= -\frac{i}{t} \int_{-t}^{t} \langle f^{\circ} | H^{\prime} | i^{\circ} \rangle \delta(t^{\prime}) e^{i \omega_{f} i^{\prime}} dt^{\prime}$
Due to $\delta(t)$, this integral is easy to perform
Just substitute $t^{\prime}=0$. This gives,
 $d_{f^{\circ}}(t) = -\frac{i}{t} \langle f^{\circ} | H^{\prime} | i^{\circ} \rangle$
 $\therefore P_{i^{\circ} \rightarrow f^{\circ}}(t) = \frac{1}{t^{2}} |\langle f^{\circ} | H^{\prime} | i^{\circ} \rangle|^{2}$.