Back to course webpage

Rotation Operator for Spin

To construct the rotation operator for spin, we use the concept of spin angular momentum in quantum mechanics. The rotation operator for a spin-$ \frac{1}{2} $ particle (like an electron) is particularly important. Here's the step-by-step construction:

1. Spin Angular Momentum Operator

For a spin-$ \frac{1}{2} $ particle, the spin operators are given by:

$$ S_x = \frac{\hbar}{2} \sigma_x, \quad S_y = \frac{\hbar}{2} \sigma_y, \quad S_z = \frac{\hbar}{2} \sigma_z $$

where $ \sigma_x, \sigma_y, \sigma_z $ are the Pauli matrices, and $ \hbar $ is the reduced Planck constant.

2. Rotation Operator

The general rotation operator $ R(\hat{n}, \theta) $ around an axis $ \hat{n} = (n_x, n_y, n_z) $ by an angle $ \theta $ is given by:

$$ R(\hat{n}, \theta) = e^{-i \frac{\theta}{\hbar} (\hat{n} \cdot \mathbf{S})} $$

For spin-$ \frac{1}{2} $, this becomes:

$$ R(\hat{n}, \theta) = e^{-i \frac{\theta}{2} (\hat{n} \cdot \mathbf{\sigma})} $$

where $ \hat{n} \cdot \mathbf{\sigma} = n_x \sigma_x + n_y \sigma_y + n_z \sigma_z $.

3. Matrix Exponential

To find the matrix form of $ R(\hat{n}, \theta) $, we can use the properties of the Pauli matrices and the exponential of operators:

$$ R(\hat{n}, \theta) = \cos \left( \frac{\theta}{2} \right) I - i \sin \left( \frac{\theta}{2} \right) (\hat{n} \cdot \mathbf{\sigma}) $$

This can be expanded as:

$$ R(\hat{n}, \theta) = \cos \left( \frac{\theta}{2} \right) I - i \sin \left( \frac{\theta}{2} \right) (n_x \sigma_x + n_y \sigma_y + n_z \sigma_z) $$

4. Special Cases

Rotation around the $ x $-axis:

$$ R(\hat{x}, \theta) = \cos \left( \frac{\theta}{2} \right) I - i \sin \left( \frac{\theta}{2} \right) \sigma_x $$

Rotation around the $ y $-axis:

$$ R(\hat{y}, \theta) = \cos \left( \frac{\theta}{2} \right) I - i \sin \left( \frac{\theta}{2} \right) \sigma_y $$

Rotation around the $ z $-axis:

$$ R(\hat{z}, \theta) = \cos \left( \frac{\theta}{2} \right) I - i \sin \left( \frac{\theta}{2} \right) \sigma_z $$

Summary

The rotation operator for spin-$ \frac{1}{2} $ particles allows us to describe rotations in quantum mechanics. Using the Pauli matrices and the exponential form, we can construct rotation matrices for any axis and angle of rotation.


Back to course webpage